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Abstract. Neutron diffraction patterns for vitreous germania, synthetic vitreous 
silica and radiation-damaged synthetic silica have been obtained to 18 A - l .  With the 
use of a special resolution function the results have been analysed to produce ‘radial 
distribution functions’ free of truncation error ripples. The function for vitreous 
germania shows considerable improvement on previous x-ray measurements. Evidence 
for the concept of ordered groups of molecules in the glass is obtained from the 
radiation-damaged experiments. 

1. Introduction 
Synthetic vitreous silica is a glass produced by the vapour phase hydrolysis or oxidation 

of silicon compounds. Unlike the more orthodox glasses made by the fusing of crystalline 
forms of silica this glass does not go through an intermediate crystalline state (Lorch 1967) 
in its manufacturing process. Thus its structure would be similar but not necessarily 
identical to that of the fused quartz glasses. 

Vitreous germania is a simple glass believed, as vitreous silica, to have tetrahedral 
co-ordination. Very little x-ray investigation of its structure is to be found in the literature 
(Zarzycki 1957) and no neutron diffraction results have been published. 

The  study of radiation-damaged glasses has been undertaken by several workers 
(Primak 1958, Simon 1957, Lukesh 1955) but information on the radial distribution 
functions and neutron diffraction patterns of such glasses seems also not to have been 
published. 

2. Theory 
The total differential coherent scattering cross section for neutrons (for a system of 

N particles) can be expressed in terms of the atomic density distribution, in the static 
approximation (Turchin 1965), as 

I (1) [ 1 + so Cg(4 -go) exP( - iQ - r> dr  
docoh m 
-- - 
dQ 

where g(r)  is the atomic density distribution, go is the mean atomic density, AQ is the 
momentum change of the neutron in the scatter process, and ncoh is the coherent scattering 
length. For a spherically symmetrical system with random orientation 

sin QY m d oooh 
- = a2 [ 1 +I 4rr2{g ( r )  -go} - d v ]  , 
dQ 0 Q Y 

For a polyatomic system which can be divided into basic units (molecules) equation (2) 
becomes 

where E, is a summation over all the atoms (origins) in the basic unit, Nu is the number 
of such units, X,, is the sum over a11 the species of atoms in the system, g,,(r) is the atomic 
density distribution of n type atoms about the origin (m) atom and g,, is the mean density 
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of type IZ atoms. Dividing equation (3) through by N u X a m 2  we have 

and 
1 daCoh 1 i(Q) = -1. 

Nu dQ X m a m 2  

i(Q) is a normalized intensity obtained from the experimental diffraction pattern I(&): 

where I( CO) = N u X m a m 2  and is the 'structure independent' coherent scattering obtained 
from the data at large momentum change (Q) values. 

The Fourier transform of equation (4) is 

If me write 
X m a n  Xnangmn(Y)  

X m a m 2  B ( y >  = 

and 
E m a m  x n a n g n o  

x m a m 2  
Bo = 

then equation ( 5 )  becomes 

4nr2(g(r) -go} = Qi(Q) sin QY dQ. 

3. Truncation effect 
For elastic scattering Q = (4n/h) sin 0 where 0 is half the scattering angle. In  any 

experiment the range of Q values which can be covered is limited by instrumentally 
accessible values of X and 28. This means that the experimental quantity i (Q) can only be 
measured over a limited range of Q values which necessitates that the numerical solution 
of equation (6) be truncated at the maximum experimental value of Q, i.e. Qmax. This 
truncation leads to the appearance of spurious ripples in the radial distribution function 
and many workers (Furukawa 1962, Hosemann and Bagchi 1962) have dealt with their 
identification. However, the fact that results cannot be taken for momentum change values 
greater than some instrumentally determined maximum is equivalent to saying that the 
intensity of diffraction cannot be plotted for every point Y in real space. If we say, however, 
that the scattering from a volume of space around Y is the quantity detected, equation (6) 
may be written 

f + A12 
4 n ~ ~ ( B ( ~ ) - g ~ ]  dr  = - 1""" Qi(Q) sin QY dQ Y dr s r - A / 2  77 r-A/7. 0 

where A is a small length in real space. If A < Y ,  ( { ( Y )  -go} may be taken as constant over 
r + A12 to r - A12 and straightforward integration gives 

s inQr  AQ 
4 n r 2 ( g ( r ) - g o }  = - 2r rmaX i(Q) aja sin - dQ 

T o  2 
where A = 2r/Qmax and A defines the resolution of the radial distribution function. 



Neutron dzrraction by glasses 231 

It is found that equation (7) removes spurious truncation ripples from the radial 
distribution function and allows more positive identification of the remaining maxima, 
some of which have been erroneously identified as truncation ripples by other workers. 

4. Corrections to the normalized diffraction pattern 
I n  the derivation of equation (1) (Turchin 1965) it is assumed that the scattered neutron 

loses an amount of energy small compared with its incident value. This is the so-called 
'static approximation'. For neutrons of wavelengths of the order of 1 b this approximation 
is in error. The  error is partially compensated for by the use of the Placxek corrections 
(Turchin 1965, Plackzek 1952) and the form of these corrections for the polyatomic 
systems of equation (3) (Lorch 1967) is 

K, 1 
corrections = -Nu 2 am2 I -  - 1- - +- - - - L, 1 ;;( 4,) 3 E ( A  :ill 

where E = E,/KT, Eo being the incident neutron energy, i? is the average kinetic energy 
of the atom in units of KT,  A is the mass ratio of scattering nucleus to neutron, and 
E = h2Q2/2MKT, M being the mass of the scattering nucleus. 

5. Vitreous germania 
The diffraction pattern for vitreous germania was obtained using the twin-axis neutron 

spectrometer on the HERALD reactor at the Atomic Weapons Research Establishment, 
Aldermaston. The  patterns were obtained in two stages using 1.18 b neutrons to cover the 
region of momentum space from zero to 9.3 A-I, and 0.57 b neutrons to extend the range 
from 9.3 W - l  to 18 b - l .  

An estimation for the multiple and incoherent backgrounds, which are assumed 
isotropic, is made by the usual technique of extrapolation to zero Q ,  figure 1. This extrapola- 
tion technique in no way affects the shape of the derived radial distribution function but 
enters directly when co-ordination numbers are calculated. The  technique used for 
joining the two diffraction patterns differs from that of other workers and is explained 
further. 

I 
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Figure 1, Neutron diffraction pattern 
of vitreous germania to 9.3 obtained 
using 1.18 .i neutrons. The estimated 
values of the independent coherent 
scattering, I ( m )  and the multiple plus 
incoherent scattering, I(O), are also 

shown. 
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Figure 2. Radial distribution function 
for vitreous germania obtained from the 
Fourier transformation of the diffraction 
pattern of figure 1. The dotted curve 
shows the position of the ripple obtained 
when an incorrect value of I( to) is used. 
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The Fourier transform of the data to 9.3 W - l  has been performed using an estimated 
value of I( CO). The  resulting low resolution radial distribution function is shown in 
figure 2. A small ripple is usually found at values of Y less than the smallest interatomic 
spacing which is shown by the first major peak. From equation (6) and ( 4 ~ )  it is not 
difficult to show that an error AI( CO) leads to an extra term AR in the radial distribution 
function (Lorch 1967) where 

AR(Y) = - ZAI( CO) sinrQmax - ( - 1’ 
(I( CO) + AI( CO) - I(0)) r Qmax 

(9) 

that is a damped periodic function which, if AI( co) << I( CO), is proportional to AI( CO). A 
plot of ripple amplitude against estimated I( CO) produces the curve of figure 3 from which 
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Figure 3. Ripple amplitude against estimated value of I (  m). The I( 03) intercept gives 
the value used in the Fourier transformation. 

Figure 4. Mated diffraction pattern of 
vitreous germania; the broken curve 
shows the value of the 0.57 A pattern in 

the region of overlap. 
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Figure 5 .  Normalized diffraction pat- 
tern for vitreous germania showing the 
effect of the Placzek corrections: 
_ _ _ _ _ _  normalized incident pattern; 

normalized incident pattern with 
Placzek corrections; . . . pattern obtained 
by reverse Fourier transformation of the 

radial distribution function. 

the value of I( CO) is estimated. The 0.57 W pattern was then normalized at 8 h-l to the 
value of the 1.18 A pattern at the same peak. The resulting diffraction pattern with a 
common overlap region is shown in figure 4. The normalized diffraction pattern corres- 
ponding to equation (4a) is given in figure 5 .  The general tendency for the distribution to 
curve downwards with increasing Q as predicted by the Placzek corrections is clearly 
observed. For vitreous germania the corrections are evaluated as 

C = -3.65 x 10-4,Q’+4-1 x 
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Application of this correction causes the pattern to return to a function oscillating around 
zero, figure 5, showing that the zero-ripple vaiue of I( CO) is a good fit for the normalization 
procedure. 

The  Fourier transforms of the corrected and uncorrected patterns have been performed 
using increments (In0 1957) of Q of 0.1 W - l  in the numerical integration of equation (7) .  
Differences between the two radial distribution functions are found to be confined to the 
magnitude of the ripples before the first major peak (figure 6). Use of the corrections 
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Figure 6. Radial distribution function Figure 7. Total radial distribution 
from 18 h - l  mated diffraction pattern 
of vitreous germania (figure 4) showing 
position of spurious ripples and effect of 
Placzek corrections : - Placzek cor- 
rected pattern ; . . . . . . . . . uncorrected 

pattern. 

function of vitreous germania. 

causes a reduction of up to 50% in their amplitude. In  general the resulting radial distribu- 
tion functions are not found to be very sensitive to the detail of the tail owing to the dampen- 
ing effect on i (Q) of the sin AQ/2 term of equation (7) .  This is clearly shown by the dotted 
curve of figure 5 which is the reverse Fourier transform of the radial distribution function 
corresponding to the uncorrected diffraction pattern. This shows that when equation (7) 
is used the corrections may generally be neglected if no importance is attached to the 
ripples at small distances. The  differential and total radial distribution functions are 
shown in figures 6 and 7 and comparison of the results with those of Zarzycki (1957) using 
x-rays shows the improvement in radial distribution function resolution. Major peaks 
are found in the total radial distribution function at the position indicated in table 1. 

Crystalline germania is known to exist in two phases; the first with a-quartz type struc- 
ture having tetrahedrally co-ordinated germania and the second a rutile structure having 
octahedral co-ordination. The  densities of these two phases are 4.2 g and 6.2 g cm-3 
respectively whereas that for germania glass is 3.65 g ~ m - ~ .  The  densities alone provide 
some indication of the type of co-ordination present. The  co-ordination number for 
germania glass is calculated from the area of the first peak in the radial distribution function 
as 3.8 in reasonable agreement with that expected for tetrahedral co-ordination, namely 4. 
Estimation of co-ordination numbers is, however, necessarily approximate owing to the extra- 
polation method used to estimate I (0)  for the multiple and incoherent contribution, a 
quantity which enters directly into the calculation of the radial distribution function. It is 
to be noted that in this particular case it would be impossible to obtain a higher co- 
ordination number without upward extrapolation of the curve at low Q values. 
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Table 1. Position of peaks in total radial distribution function of germania 
glass 

Peak Position Identification 
(4 

1 1.72 Ge-0 
2 2.85 0-0 
3 3 a45 Ge-Ge 
4 4.2 Ge-20" 
5 4.9 0-20" 
6 5.27 Ge-2Ge" 
7 6.05 

* These peaks are not due to one type of 
co-ordination and should not be rigorously 
icterpreted. 
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Table 2. Main peaks in radial distribution functions of silica and radiation- 
damaged silica glasses 

Possible 
atomic 

pair 
Si-0 
0-0 
Si-Si 
Si-20 
0-2 0 

Distances (A) - 
Silica glasses 

Present work Heaton 
(1967) 

(neutron) 
1-60 kO.05 1.59 

2.6 2.62 
3.05 3.22 
3.60 3.7 
4.05 4.09 
5.02 5 4 3  

4.08 
5.02 

Radiation- 
damaged glass 
Present work 

1 *6 k 0.05 
2.6 
3 *OS 
3.55 
3.95 
5.1 

T Refers to work by Norman. 



Neutron dtzraction by glasses 235 

A summary of the peaks is given in table 2 together with those of several other workers. 
Attention is drawn to the appearance of a peak at about 3.6 .l which has also been detected 
by other workers (Heaton 1967, Carraro 1965) but has often been identified as a truncation 
ripple. Its appearance here, in spite of use of the resolution function (equation (7)) strongly 
suggests that it has a structural origin and it will be significant in any comparison made 
between the vitreous radial distribution function and the statistics of co-ordination of the 
various forms of crystalline silica. 

7. Radiation-damaged Spectrosil 
A Spectrosil sample cut from the same block as that for which the above results were 

given was exposed to an estimated fast neutron flux of 2.04 x 1020 n.v.t. The  density of the 
irradiated sample was 2.254 g cm-3 showing a 2.6% increase on that of the control specimen. 
The specimen was found to have acquired a deep blue colour whereas the control was 
colourless. The  corrected normalized neutron diffraction pattern of figure 10 was obtained 
in the manner described for the previous two samples. The  Fourier transform is given in 
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Figure 11. Total radial distribution Figure 10. Normalized diffraction pat- 

tern of radiation-damaged synthetic function for radiation-damaged syn- 

io - I  .20 

-2-00 
0 

vitreous silica. thetic vitreous silica. 

figure 11 and the listing of the peaks in table 2. Because of the magnitude of the experi- 
mental error no significance can be given to the fact that peaks 4 and 5 lie at smaller distances 
than for the control specimen. Detail after the 5.1 A maxima is very weak suggesting that 
ordered structure does not extend greatly beyond this limit. The  areas under all the 
maxima show a decrease with the Si-0 peak showing the greatest change. The  change in 
shape of the first peak is also noted, the subsequent ‘hump’ suggesting a preferential site 
for the displaced atoms. It may be significant that all the major peaks appear to be followed 
by such a ‘hump’. Of still more importance, from the author’s point of view, are the 
changes which have occurred in the diffraction .pattern on irradiation. The  clearest of 
these is the drastic reduction in the area of the first peak. Comparison of figure 10 with 
figure 8 shows that this peak has decreased perhaps 20% in area. It seems reasonable to 
postulate that the normal diffraction pattern is constructed from two portions, the low 
Q portion showing co-ordination of some extra molecular unit, perhaps rings, whereas the 
higher subsequent Q portion reflects the internal molecular structure. Such extra molecular 
units will have their own scattering centres defined by an equation of the form 

where R, is the vector position of the scattering centre, R, is the vector position of the nth 
atom in the unit, N is the number of molecules in the unit, asi is the neutron scattering 
length of the Si atoms, and a, is the neutron scattering length of the 0 atoms. 
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Obviously displacement of a few of the atoms wiIl lead to a redefinition of R ,  and the 
unit’s scattering centre will lose its correlation with respect to the other units. This is 
reflected in the decrease in the area of the first diffraction peak. However, whereas dis- 
placement of even a single atom leads theoretically to a redefinition of R ,  the effect on the 
internal correlation of the N molecules will be small, displacement of one atom affecting 
at the most the internal correlation of two silica tetrahedra. The above argument simply 
reasons that there is a reduction in the long-range order of the glass but it is useful in that it 
introduces the idea of clusters of tetrahedra. As a further illustration of this effect the 
Fourier transform of the diffraction pattern to 4 A-1 has been performed. This process is 
meaningful owing to the use of the resolution function which ensures that the radial 
distribution function corresponds to that part of the diffraction pattern which dampens out 
by 4 A - l  and effectively rejects overlapping information from high Q portions of the pattern, 
compare with the overlapping of two Gaussians. The radial distribution function so 
obtained is shown in figure 12 and it is clearly seen that no information is present for 

-6-01 

-10.01 
0 4.0 8.0 12.0 15.0 

r (HI 

Figure 12. Radial distribution function obtained from Fourier transforming vitreous 
silica pattern to Q,,, = 4 A - ’ .  

distances corresponding to those of the internal dimensions of the basic tetrahedra, i.e. 
2.65 A. At this stage the first broad peak at approximately 4.9 W is taken to show the scatter- 
ing centre corresponding to some grouping, possibly rings, of tetrahedra. A simple 
calculation on a perfect six-sided ring gives a ‘diameter’ of 5.3 A. I n  any true model of 
the glass many different types of rings are to be expected with a possible preference for five- 
sided grouping (Oberlies and Dietzel 1957) and a resulting smaller diameter. 

8. Conclusion 
Although the origin of spurious ripples in the radial distribution functions has been 

investigated and possible causes found it has not been possible to eliminate them com- 
pletely. The ripples before the first major peak, which represent the smallest interatomic 
distance, are very sensitive to the value of the term I( 00) of equation (4a) and are not 
structurally significant. No other peaks in the radial distribution function show the same 
sensitivity to I( 00). 

New data have been presented for vitreous germania and radiation-damaged vitreous 
silica and the radial distribution function for synthetic vitreous silica has been found to be 
basically the same as that for ordinary vitreous silica. 

Finally it should be noted that in any more detailed analysis of radial distribution 
functions consideration must be given to the effect of distortions inherent in diffraction 
patterns obtained by the standard method of twin-axis neutron spectroscopy. These 
distortions are due to deviations from the static approximation (Placzek 1952, Turchin 
1965) and are only partly compensated for by the correction given by equation (8). 
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