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Abstract
Histograms of counted events are Poisson distributed, but are typically fitted without 
justification using nonlinear least squares fitting.  The more appropriate maximum 
likelihood estimator (MLE) for Poisson distributed data is seldom used.  We extend the 
use of the Levenberg-Marquardt algorithm commonly used for nonlinear least squares 
minimization for use with the MLE for Poisson distributed data.  In so doing, we remove 
any excuse for not using this more appropriate MLE.  We demonstrate the use of the 
algorithm and the superior performance of the MLE using simulations and experiments in 
the context of fluorescence lifetime imaging.

Scientists commonly form histograms of counted events from their data, and extract 
parameters by fitting to a specified model.  Assuming that the probability of occurrence 
for each bin is small, event counts in the histogram bins will be distributed according to 
the Poisson distribution [1]. We develop here an efficient algorithm for fitting event 
counting histograms using the maximum likelihood estimator (MLE) for Poisson 
distributed data, rather than the non-linear least squares measure.  This algorithm is a 
simple extension of the common Levenberg-Marquardt (L-M) algorithm [2], is simple to 
implement, quick and robust.  

Fitting using a least squares measure is most common, but it is the maximum 
likelihood estimator only for Gaussian-distributed data.  Non-linear least squares methods 
may be applied to event counting histograms in cases where the number of events is very 
large, so that the Poisson distribution is well approximated by a Gaussian.  However, it is 
not easy to satisfy this criterion in practice – which requires a large number of events.  

It has been well-known for years that least squares procedures lead to biased results 
when applied to Poisson-distributed data; a recent paper providing extensive 
characterization of these biases in exponential fitting is given in [3].  The more 
appropriate measure based on the maximum likelihood estimator (MLE) for the Poisson 
distribution is also well known, but has not become generally used.  This is primarily 
because, in contrast to non-linear least squares fitting, there has been no quick, robust, 
and general fitting method.  In the field of fluorescence lifetime spectroscopy and 
imaging, there have been some efforts to use this estimator through minimization routines 
such as Nelder-Mead optimization [4, 5], exhaustive line searches [6],  and Gauss-
Newton minimization [7].  Minimization based on specific one- or multi-exponential
models [8, 9] has been used to obtain quick results, but this procedure does not allow the 
incorporation of the instrument response, and is not generally applicable to models found 
in other fields.  Methods for using the MLE for Poisson-distributed data have been 
published by the wider spectroscopic community [10, 11], including iterative 
minimization schemes based on Gauss-Newton minimization[12].  



The slow acceptance of these procedures for fitting event counting histograms may also 
be explained by the use of the ubiquitous, fast Levenberg-Marquardt (L-M) fitting 
procedure for fitting non-linear models using least squares fitting [2] (simple searches 
obtain ~10000 references – this doesn’t include those who use it, but don’t know they are 
using it).  The benefits of L-M include a seamless transition between Gauss-Newton 
minimization and downward gradient minimization through the use of a regularization
parameter.  This transition is desirable because Gauss-Newton methods converge quickly, 
but only within a limited domain of convergence; on the other hand the downward 
gradient methods have a much wider domain of convergence, but converge extremely 
slowly nearer the minimum.  L-M has the advantages of both procedures: relative 
insensitivity to initial parameters and rapid convergence.  Scientists, when wanting an 
answer quickly, will fit data using L-M, get an answer, and move on.  Only those that are 
aware of the bias issues will bother to fit using the more appropriate MLE for Poisson 
deviates.  However, since there is a simple, analytical formula for the appropriate MLE 
measure for Poisson deviates, it is inexcusable that least squares estimators are used 
almost exclusively when fitting event counting histograms.  There have been ways found 
to use successive non-linear least squares fitting to obtain similarly unbiased results [3], 
but this procedure is justified by simulation, must be re-tested when conditions change 
significantly, and requires two successive fits.  There is a great need for a fitting routine 
for the MLE estimator for Poisson deviates that has convergence domains and rates 
comparable to the non-linear least squares L-M fitting.  

We show here that a simple way to achieve that goal is to use the L-M fitting procedure 
not to minimize the least squares measure, but the MLE for Poisson deviates. We replace 
the least squares calculation in the L-M routine with the MLE estimator, make 
corresponding changes in the gradients calculated, and achieve the desired procedure.  

Consider a data set y=(y1,y2,…,yN) where each yi is the number of independent events  
in a histogram bin i defined as a range in variables x=(x1,x2,…).  N is large enough that 
the probability that an event is within any bin is small (Poisson distributed rather than 
multinomial).  The model function to be fitted is f=(f1,f2,…,fN) and depends on 
parameters a=(a1,a2,…,aM).  The MLE for Poisson deviates is
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This function is minimized to find the best fit.  Note that each fi is required to be positive; 
any fitting procedure must adjust a in such a way that f is positive for every element.  
Otherwise, the minimization will run into problems.  For example, if yi is positive, then 
the last term in Eq. (1) is undefined.  Eq. (1) may be compared to the more familiar least-
squares 2 statistic,
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In this case, σi is the uncertainty for each data point yi.  



As we extend the L-M algorithm for use with the MLE for Poisson-distributed 
histogram bins [Eq. (1)], we follow many of the arguments made in Marquardt’s original
paper and in the book Numerical Recipes[13].

Iterative minimization schemes use information about the function near current 
parameters acurr to find improved estimates of the parameters that minimize that function.  
In the neighborhood of the current parameters acurr, the function 2

MLE may be 
approximated by its Taylor expansion, 
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If acurr is sufficiently near the minimum, then by differentiating Eq. (3) and setting to 0, 
we determine amin,
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In Newton and Gauss-Newton iterative schemes, Eq. (6) is used to find successively 
improved estimates of amin.  We will now imitate the procedure for the L-M algorithm for 
least squares, and ignore the term with the second derivatives in Eq. (5) when using Eq. 
(6).  Gauss-Newton minimization schemes ignore the corresponding term for least 
squares analysis, both because of the frequent difficulty in computing the second 
derivatives and for their potential destabilizing influence [13].  We will discuss this issue 
further at the end of the letter.  We define the following matrix α and vector β, 
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We can then write Eq. (6) as

.k l l ka   (8)

Just as in the least squares case, the Gauss-Newton minimization scheme of Eq. (8)
runs into trouble when Eq. (3) is a poor approximation, leading to increases in 2

mle after 
an iteration step.  We solve this problem in precisely the same way as in the L-M least 
squares algorithm: we augment the diagonal elements of the matrix by a multiplicative 
factor  1  ,

 1k l k l k l     δ (9)



We then have the iteration step
.k l l ka    (10)

In the L-M algorithm, if an iteration step in Eq. (10) fails to decrease 2
mle , we increase λ 

(typically by a factor of 10), and try Eq. (10) again.  As λ increases, the solution to Eq. 
(10) rotates toward the downhill gradient of 2

mle .  For sufficiently high λ, this will 
guarantee a decrease in 2

mle , although convergence may be slow in certain cases.  
Marquardt provides three theorems to justify his algorithm [2].  These can be seen to 
apply in this case by replacing the expressions for the least squares estimator with the 
corresponding expressions for the MLE for the Poisson distribution.  It is particularly 
important to note that kl (which replaces A in Marquardt’s paper), is positive definite –
as long as fi is strictly positive.  

We are able to easily modify the Numerical Recipes code (2nd edition) for the L-M
algorithm to perform the minimization for 2

mle .  The only changes needed are in the 
function mrqcof (no changes in mrqmin).  We simply modify the calculations for alpha
and beta to correspond to Eq. (7), and the calculation of chisq to correspond to Eq. (1).  
sig2i is no longer used.

We now test our implementation on simulated and experimental data.  In each case, we 
show the benefits of MLE over least squares fitting, and show that convergence rates and 
domains are similar.  We compare our results with those obtained using non-linear least 
squares fitting of Eq. (2).  To do this, we choose values for σi as typically implemented 
for event counting data.  Since σi depends on the expectation iy for Poisson-distributed 
data, an estimate for σi must be made based on the available information (y and f).  Since 
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The max function is there to prevent division by 0.  Pearson instead estimates with 
the function value fi, yielding
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Several other modified statistics have been proposed; however, problems in biases are 
encountered with each [3, 10, 11].  In our tests, we implement both Neyman’s 2

N and an
unweighted 2

1 where we just weight all data points equally, σi=1.  We attempted to use 
Eq. (12), but the final fitted values varied erratically.

We test our method on simulated and measured data of one- or two-exponential 
lifetime decays, as encountered in fluorescence lifetime measurements using time-
correlated single photon counting (TCSPC).  In such measurements, a high repetition rate 
laser (e.g. 40 MHz) excites fluorescence.  Fluorescence is detected by single photon 

2
i

2



detectors.  The time delay between each detected photon and the exciting laser pulse is 
measured and recorded.  Histograms of the measured photon time delays are fit to 
exponentials in order to extract the fluorescence lifetime.  In order to accurately extract 
lifetimes, the finite bin widths, the finite measurement window available between laser 
pulses, and the measured instrument response must be taken into account.  We take T as 
the time between laser pulses.  As above, N is the number of bins in the histogram.   is 
the lifetime of the decay model, and IRFi is the measured instrument response (i=1…N).  
We define Tr  .  A is the amplitude of the fitted lifetime curve (equal to the number 
of photons).  The lifetime decay is modeled  as in Zander et al. [6],
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The symbol  denotes convolution, which is typically calculated using fast Fourier 
transform algorithms.  Eq. (13) is readily extended to more than one exponential.  The 
TCSPC methodology is often used in single molecule experiments and in fluorescence 
lifetime imaging.  These applications typically do not measure a number of photons large 
enough to justify use of 2

N or 2
1 , and are ideal for use with 2

mle .
We first test our method on simulated, single exponential data with a 3 ns lifetime 

convolved with a measured instrument response (Figure 1).  Figure 1A shows examples 
of the simulated data with 100 photons and the fit.  We compared the performance of the 
L-M algorithm for 2

mle , 2
N and 2

1 in fitting 10000 realizations of the data with 100 
photons each.  The number of iterations required to reach convergence for 2

mle , 2
N and 

2
1 is shown in Fig. 1B.  The L-M algorithm quickly finds the minimum for 2

mle (4-5 
iterations) and 2

N (2-3 iterations) when supplied with the amplitude and lifetime used in 
the simulation.  However, the L-M algorithm has more difficulty in finding the minimum 
of 2

1 , requiring significantly more iterations.

Minimizing 2
mle rather than 2

N or 2
1 more accurately finds the values of the 

amplitude A and the lifetime  used in the simulation (Figs. 1C-D).  Exactly 100 photons 
were produced in each simulation.  Minimizing 2

N and 2
1 resulted in fitted A that 

deviate strongly from the number of photons in the data, whereas minimizing 2
mle

resulted in precisely 100 photons for the fitted amplitude (Fig. 1C).  The distribution of 
lifetimes fitted using 2

mle (2.99±0.31 ns) is narrower than the others (2.95±0.46 ns for 
2
1 ; 3.29±0.50 ns for 2

N ), and is centered around the correct value of 3 ns (Fig. 1D).  

The benefit of using L-M over Gauss-Newton methods in minimizing 2
mle is revealed 

when changing initial fitting parameters.  If one starts with the model τ=3ns, and varies 
the initial fitting value A, Gauss-Newton minimization (setting λ=0) fails to converge 
when A > 225 (actual value is 100), whereas the L-M implementation still converged for 
A>108.  This is critical when doing large number of repeated fits that may have large 
variations in final fitting parameters; this is usually the situation of interest for lifetime 
imaging applications, and other similar statistical analyses.



In applications with more the one lifetime, the benefits of 2
mle over 2

N and 2
1 are 

even more dramatic (Fig. 2).  The data in Fig. 2 were simulated using a two exponential 
model with equal amplitude for two lifetimes τ1=1 ns and τ2=3 ns.  There are 1000 
photons in each of the 10000 realizations of each fit.  We show distributions for the two 
fitted lifetimes τ1 and τ2, and the ratio of A1/( A1+ A2); the distribution of this ratio should 
ideally be centered around 0.5 (equal amplitudes for both lifetimes).  Fig. 2A shows a 3D 
scatter plot for 10000 fits found by minimizing 2

mle , 2
N and 2

1 .  Figs. 2B-D show the 
same data, but represented as histograms over only one parameter.  The results for 2

mle

(black points and lines) are centered on the correct values.  The results for 2
N (red) are 

offset from the correct values, not even intersecting the results using 2
mle in the 3D space 

in Fig. 2A.  The results for 2
1 are centered better on the correct values, but with far more 

spread in the values than found with 2
mle .  As seen in Fig. 2B, the fitted values often 

degenerate to a single exponential fit using 2
1 , as indicated by peaks in the ratio

A1/( A1+ A2) near 0 and 1.  The use of 2
mle clearly provides superior results, and the use 

of the L-M algorithm as developed here obtains those results quickly and robustly.  

We now test the use of the L-M algorithm with 2
mle in an experimental situation with a 

single exponential lifetime.  We perform lifetime imaging measurements on Yersinia 
pestis bacteria with constitutive expression of EGFP.  We use sample scanning confocal 
microscopy combined with TCSPC.  We excite the fluorescence using a 470 nm pulsed 
diode laser (LDH-P-C-470B , Picoquant, Berlin), detect fluorescence with an avalanche 
photodiode (PDM series, Micro Photon Devices), and measure the time delay using the 
PicoHarp 300 (Picoquant, Berlin).  Figure 3A shows an image of several Y. pestis
bacteria adhered to the glass surface.  Figure 3B shows the fit for the lifetime (2.53±0.01 
ns) for all of the photons contained in the image.  We fit the lifetime histogram for every 
pixel with more than 20 photons, and the fitted lifetimes for each pixel are represented in 
Figure 3C.  The color white represents the value of the lifetime extracted in Figure 3B, 
and deviations from that value are shown in red and green.  Regions with fewer photons 
have a larger scatter, but the mean values of the fitted lifetime are the same throughout 
the image.  Figures 3D and 3D compare the fitted lifetimes for, respectively, pixels with 
between 20 and 70 photons and pixels with between 150 and 300 photons.  The 
histograms obtained for 2

mle are narrower than for the other cases just as we saw in 
Figure 1.  Note than in Figure 3E that the fitted values found for 2

N are centered at a 
higher, incorrect value of 2.8 ns.  Also, Figure 3F shows that convergence was easier to 
obtain for 2

mle and 2
N than for 2

1 .  The results from experiments match those obtained 
from simulation.  

We have extended the L-M algorithm to be used with the MLE for Poisson distributed 
data, and have shown that it works for lifetime imaging applications both by simulation 
and experiment.  This extension is not limited to fluorescence lifetime imaging 
applications.  Indeed, it can be applied anytime one forms an event counting histogram in 
any application.  We have performed simulations showing that the methodology works 
with the sum of two Gaussians, for instance (not shown).  



In developing the algorithm, we ignored the second-derivative terms in the Hessian, Eq. 
(5).  Minimization algorithms that build on the L-M algorithm for non-linear least squares 
[14, 15] estimate this ignored term when it is advantageous to do so, and are more robust 
than the original L-M algorithm in large residual problems.  An extension of these 
algorithms to more general nonlinear regression models was provided later [16, 17].   
Although the latter algorithm was explicitly shown to be applicable to a form of Eq. (1), 
we have not found any examples of this algorithm being used for this application.  We 
suspect this has to do with the real or perceived complexity of the algorithm.  There are 
many benefits and drawbacks of various non-linear minimization schemes.  We have 
chosen to implement a simple change to a widely used version of the L-M algorithm to 
facilitate use of the MLE for Poisson-distributed data.  We hope that this will inspire 
other researchers to take advantage of the benefits of the MLE for Poisson-distributed 
data, reducing biases and errors in parametric results from histogram-based analysis.
There are enough uncertainties and pitfalls in science.  If we can simply eliminate one 
variable in a large range of event counting applications, we should do so.

1. Ross, S.M., Introduction to probability and statistics for engineers and scientists. 
1987, New York, N.Y.: Wiley. 492.

2. Marquardt, D.W., An algorithm for least-squares estimation of nonlinear 
parameters. J. Soc. Indust. Appl. Math., 1963. 11(2): p. 431-441.

3. Turton, D.A., G.D. Reid, and G.S. Beddard, Accurate analysis of fluorescence 
decays from single molecules in photon counting experiments. Analytical 
Chemistry, 2003. 75(16): p. 4182-4187.

4. Bajzer, Z. and F.G. Prendergast, Maximum-Likelihood Analysis Of Fluorescence 
Data. Methods In Enzymology, 1992. 210: p. 200-237.

5. Bajzer, Z., et al., Maximum-Likelihood Method For The Analysis Of Time-
Resolved Fluorescence Decay Curves. European Biophysics Journal With 
Biophysics Letters, 1991. 20(5): p. 247-262.

6. Zander, C., et al., Detection and characterization of single molecules in aqueous 
solution. Applied Physics B (Lasers and Optics), 1996. B63(5): p. 517-23.

7. Sandor, T. and G.D. Wilson, Maximum Likelihood Estimation Of Parameters In 
Multi Exponential Fits When Data Follow Poisson Distribution. Computer 
Programs in Biomedicine, 1972. 2(2): p. 111-117.

8. Hall, P. and B. Selinger, Better Estimates Of Multiexponential Decay Parameters.
Zeitschrift Fur Physikalische Chemie Neue Folge, 1984. 141: p. 77-89.

9. Hall, P. and B. Selinger, Better Estimates Of Exponential Decay Parameters.
Journal Of Physical Chemistry, 1981. 85(20): p. 2941-2946.

10. Hauschild, T. and M. Jentschel, Comparison of maximum likelihood estimation 
and chi-square statistics applied to counting experiments. Nuclear Instruments 
and Methods in Physics Research Section A: Accelerators, Spectrometers, 
Detectors and Associated Equipment, 2001. 457(1-2): p. 384.

11. Stoneking, M.R. and D.J. Den Hartog. Maximum-likelihood fitting of data 
dominated by Poisson statistical uncertainties. in Proceedings of the eleventh 



topical conference on high temperature plasma diagnostics. 1997. Monterey, 
California (USA): AIP.

12. Muravsky, V.A., S.A. Tolstov, and A.L. Kholmetskii, Comparison of the least 
squares and the maximum likelihood estimators for gamma-spectrometry. Nuclear 
Instruments & Methods In Physics Research Section B-Beam Interactions With 
Materials And Atoms, 1998. 145(4): p. 573-577.

13. Press, W.H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical 
recipes in C: the art of scientific computing. 2nd ed. 1992, Cambridge, U.K.: 
Cambridge University Press. xxvi, 994.

14. Dennis, J.E., D.M. Gay, and R.E. Welsch, An Adaptive Non-Linear Least-Squares 
Algorithm. Acm Transactions On Mathematical Software, 1981. 7(3): p. 348-368.

15. Dennis, J.E., D.M. Gay, and R.E. Welsch, Algorithm 573 - Nl2sol - An Adaptive 
Non-Linear Least-Squares Algorithm [E4]. Acm Transactions On Mathematical 
Software, 1981. 7(3): p. 369-383.

16. Bunch, D.S., D.M. Gay, and R.E. Welsch, Algorithm-717 Subroutines For 
Maximum-Likelihood And Quasi-Likelihood Estimation Of Parameters In 
Nonlinear-Regression Models. Acm Transactions On Mathematical Software, 
1993. 19(1): p. 109-130.

17. Gay, D.M. and R.E. Welsch, Maximum-Likelihood And Quasi-Likelihood For 
Nonlinear Exponential Family Regression-Models. Journal Of The American 
Statistical Association, 1988. 83(404): p. 990-998.

 
 
 
This work performed under the auspices of the U.S. Department of Energy by Lawrence 
Livermore National Laboratory under Contract DE-AC52-07NA27344. 



Figure 1: Fitting results for data simulated from a single exponential model with 3ns 
lifetime and exactly 100 photons per fit. A.  Example data set (black) fitted using 
single exponential model (red).  B.  Histogram of the number of iterations 
required to reach the convergence criterion (a change in 2

mle , 2
N or 2

1 of less 
than 10-6) for the MLE, Neyman, and Equal Weighting figures of merit.  C. 
Histogram of the fitted ampltidues A for each of the three methods.  D.  
Histogram of fitted lifetimes τ.



Figure 2: Fitting results for data simulated from a two exponential model with 1 ns and 3 
ns components with equal weight, and exactly 1000 photons per fit.  The average 
number of iterations for each method to converge was 4.4 for MLE, 6.5 for 
Neyman, and 30 for least squares with equal weighting.  A.  3D scatter plot of 
fitted lifetimes τ1 and τ2, and the ratio of fitted amplitudes A1/( A1+ A2) (ideally 
0.5) for 10000 realizations of the data for 2

mle , 2
N and 2

1 .  B.  Histograms of 
results from A over the ratio of amplitudes A1/( A1+ A2).  C. Histograms of fitted 
lifetime τ1.  D. Histograms of fitted lifetime τ2.



Figure 3: Lifetime imaging data for Yersinia pestis with constitutive expression of EGFP.  
A: Image of bacteria adhered to glass surface.  B: Lifetime Data (all photons in 
image) and fit, including instrument response; fitted lifetime of 2.53 ns agrees 
with literature values for EGFP.  C. Lifetime Map using the MLE procedure. Fits 
are shown only for pixels with 20 or more photons. D. Distribution of fitted 



values for the different procedures for pixels with between 20 and 70 photons. E. 
Distribution of fitted values for the different procedures for pixels with between 
150 and 300 photons. F. Histograms of the number of iterations required to 
obtain convergence.


