1 | from mantid.simpleapi import * |
---|
2 | from IndirectImport import import_mantidplot |
---|
3 | mp = import_mantidplot() |
---|
4 | from IndirectCommon import * |
---|
5 | from mantid import config, logger |
---|
6 | import math, re, os.path, numpy as np |
---|
7 | |
---|
8 | ############################################################################## |
---|
9 | # Misc. Helper Functions |
---|
10 | ############################################################################## |
---|
11 | |
---|
12 | def concatWSs(workspaces, unit, name): |
---|
13 | dataX = [] |
---|
14 | dataY = [] |
---|
15 | dataE = [] |
---|
16 | for ws in workspaces: |
---|
17 | readX = mtd[ws].readX(0) |
---|
18 | readY = mtd[ws].readY(0) |
---|
19 | readE = mtd[ws].readE(0) |
---|
20 | for i in range(0, len(readX)): |
---|
21 | dataX.append(readX[i]) |
---|
22 | for i in range(0, len(readY)): |
---|
23 | dataY.append(readY[i]) |
---|
24 | dataE.append(readE[i]) |
---|
25 | CreateWorkspace(OutputWorkspace=name, DataX=dataX, DataY=dataY, DataE=dataE, |
---|
26 | NSpec=len(workspaces), UnitX=unit) |
---|
27 | |
---|
28 | def split(l, n): |
---|
29 | #Yield successive n-sized chunks from l. |
---|
30 | for i in xrange(0, len(l), n): |
---|
31 | yield l[i:i+n] |
---|
32 | |
---|
33 | def segment(l, fromIndex, toIndex): |
---|
34 | for i in xrange(fromIndex, toIndex + 1): |
---|
35 | yield l[i] |
---|
36 | |
---|
37 | def trimData(nSpec, vals, min, max): |
---|
38 | result = [] |
---|
39 | chunkSize = len(vals) / nSpec |
---|
40 | assert min >= 0, 'trimData: min is less then zero' |
---|
41 | assert max <= chunkSize - 1, 'trimData: max is greater than the number of spectra' |
---|
42 | assert min <= max, 'trimData: min is greater than max' |
---|
43 | chunks = split(vals,chunkSize) |
---|
44 | for chunk in chunks: |
---|
45 | seg = segment(chunk,min,max) |
---|
46 | for val in seg: |
---|
47 | result.append(val) |
---|
48 | return result |
---|
49 | |
---|
50 | ############################################################################## |
---|
51 | # ConvFit |
---|
52 | ############################################################################## |
---|
53 | |
---|
54 | def confitParsToWS(Table, Data, BackG='FixF', specMin=0, specMax=-1): |
---|
55 | if ( specMax == -1 ): |
---|
56 | specMax = mtd[Data].getNumberHistograms() - 1 |
---|
57 | dataX = createQaxis(Data) |
---|
58 | xAxisVals = [] |
---|
59 | xAxisTrimmed = [] |
---|
60 | dataY = [] |
---|
61 | dataE = [] |
---|
62 | names = '' |
---|
63 | ws = mtd[Table] |
---|
64 | cName = ws.getColumnNames() |
---|
65 | nSpec = ( ws.columnCount() - 1 ) / 2 |
---|
66 | for spec in range(0,nSpec): |
---|
67 | yCol = (spec*2)+1 |
---|
68 | yAxis = cName[(spec*2)+1] |
---|
69 | if re.search('HWHM$', yAxis) or re.search('Height$', yAxis): |
---|
70 | xAxisVals += dataX |
---|
71 | if (len(names) > 0): |
---|
72 | names += "," |
---|
73 | names += yAxis |
---|
74 | eCol = (spec*2)+2 |
---|
75 | eAxis = cName[(spec*2)+2] |
---|
76 | for row in range(0, ws.rowCount()): |
---|
77 | dataY.append(ws.cell(row,yCol)) |
---|
78 | dataE.append(ws.cell(row,eCol)) |
---|
79 | else: |
---|
80 | nSpec -= 1 |
---|
81 | outNm = Table + "_Workspace" |
---|
82 | xAxisTrimmed = trimData(nSpec, xAxisVals, specMin, specMax) |
---|
83 | CreateWorkspace(OutputWorkspace=outNm, DataX=xAxisTrimmed, DataY=dataY, DataE=dataE, |
---|
84 | Nspec=nSpec, UnitX='MomentumTransfer', VerticalAxisUnit='Text', |
---|
85 | VerticalAxisValues=names) |
---|
86 | return outNm |
---|
87 | |
---|
88 | def confitPlotSeq(inputWS, plot): |
---|
89 | nhist = mtd[inputWS].getNumberHistograms() |
---|
90 | if ( plot == 'All' ): |
---|
91 | mp.plotSpectrum(inputWS, range(0, nhist), True) |
---|
92 | return |
---|
93 | plotSpecs = [] |
---|
94 | if ( plot == 'Intensity' ): |
---|
95 | res = 'Height$' |
---|
96 | elif ( plot == 'HWHM' ): |
---|
97 | res = 'HWHM$' |
---|
98 | for i in range(0,nhist): |
---|
99 | title = mtd[inputWS].getAxis(1).label(i) |
---|
100 | if re.search(res, title): |
---|
101 | plotSpecs.append(i) |
---|
102 | mp.plotSpectrum(inputWS, plotSpecs, True) |
---|
103 | |
---|
104 | def confitSeq(inputWS, func, startX, endX, save, plot, ftype, bg, specMin, specMax, Verbose=True): |
---|
105 | StartTime('ConvFit') |
---|
106 | workdir = config['defaultsave.directory'] |
---|
107 | input = inputWS+',i' + str(specMin) |
---|
108 | if (specMax == -1): |
---|
109 | specMax = mtd[inputWS].getNumberHistograms() - 1 |
---|
110 | for i in range(specMin + 1, specMax + 1): |
---|
111 | input += ';'+inputWS+',i'+str(i) |
---|
112 | (instr, run) = getInstrRun(inputWS) |
---|
113 | run_name = instr + run |
---|
114 | outNm = getWSprefix(inputWS) + 'conv_' + ftype + bg + str(specMin) + "_to_" + str(specMax) |
---|
115 | if Verbose: |
---|
116 | logger.notice(func) |
---|
117 | PlotPeakByLogValue(Input=input, OutputWorkspace=outNm, Function=func, |
---|
118 | StartX=startX, EndX=endX, FitType='Sequential') |
---|
119 | wsname = confitParsToWS(outNm, inputWS, bg, specMin, specMax) |
---|
120 | RenameWorkspace(InputWorkspace=outNm, |
---|
121 | OutputWorkspace=outNm + "_Parameters") |
---|
122 | if save: |
---|
123 | SaveNexusProcessed(InputWorkspace=wsname, Filename=wsname+'.nxs') |
---|
124 | if plot != 'None': |
---|
125 | confitPlotSeq(wsname, plot) |
---|
126 | EndTime('ConvFit') |
---|
127 | |
---|
128 | ############################################################################## |
---|
129 | # Elwin |
---|
130 | ############################################################################## |
---|
131 | |
---|
132 | def elwin(inputFiles, eRange, Save=False, Verbose=True, Plot=False): |
---|
133 | StartTime('ElWin') |
---|
134 | Verbose = True |
---|
135 | workdir = config['defaultsave.directory'] |
---|
136 | CheckXrange(eRange,'Energy') |
---|
137 | tempWS = '__temp' |
---|
138 | if Verbose: |
---|
139 | range1 = str(eRange[0])+' to '+str(eRange[1]) |
---|
140 | if ( len(eRange) == 4 ): |
---|
141 | range2 = str(eRange[2])+' to '+str(eRange[3]) |
---|
142 | logger.notice('Using 2 energy ranges from '+range1+' & '+range2) |
---|
143 | elif ( len(eRange) == 2 ): |
---|
144 | logger.notice('Using 1 energy range from '+range1) |
---|
145 | nr = 0 |
---|
146 | inputRuns = sorted(inputFiles) |
---|
147 | Vrun = [] |
---|
148 | for file in inputRuns: |
---|
149 | (direct, file_name) = os.path.split(file) |
---|
150 | (root, ext) = os.path.splitext(file_name) |
---|
151 | LoadNexus(Filename=file, OutputWorkspace=tempWS) |
---|
152 | if Verbose: |
---|
153 | logger.notice('Reading file : '+file) |
---|
154 | nsam,ntc = CheckHistZero(tempWS) |
---|
155 | if ( len(eRange) == 4 ): |
---|
156 | ElasticWindow(InputWorkspace=tempWS, Range1Start=eRange[0], Range1End=eRange[1], |
---|
157 | Range2Start=eRange[2], Range2End=eRange[3], |
---|
158 | OutputInQ='__eq1', OutputInQSquared='__eq2') |
---|
159 | elif ( len(eRange) == 2 ): |
---|
160 | ElasticWindow(InputWorkspace=tempWS, Range1Start=eRange[0], Range1End=eRange[1], |
---|
161 | OutputInQ='__eq1', OutputInQSquared='__eq2') |
---|
162 | (instr, last) = getInstrRun(root) |
---|
163 | q1 = np.array(mtd['__eq1'].readX(0)) |
---|
164 | i1 = np.array(mtd['__eq1'].readY(0)) |
---|
165 | e1 = np.array(mtd['__eq1'].readE(0)) |
---|
166 | q2 = np.array(mtd['__eq2'].readX(0)) |
---|
167 | inY = mtd['__eq2'].readY(0) |
---|
168 | inE = mtd['__eq2'].readE(0) |
---|
169 | logy = [] |
---|
170 | loge = [] |
---|
171 | for i in range(0, len(inY)): |
---|
172 | if(inY[i] == 0): |
---|
173 | ly = math.log(0.000000000001) |
---|
174 | else: |
---|
175 | ly = math.log(inY[i]) |
---|
176 | logy.append(ly) |
---|
177 | if( inY[i]+inE[i] == 0 ): |
---|
178 | le = math.log(0.000000000001)-ly |
---|
179 | else: |
---|
180 | le = math.log(inY[i]+inE[i])-ly |
---|
181 | loge.append(le) |
---|
182 | i2 = np.array(logy) |
---|
183 | e2 = np.array(loge) |
---|
184 | Vrun.append(float(last)) |
---|
185 | if (nr == 0): |
---|
186 | first = getWSprefix(tempWS,root) |
---|
187 | datX1 = q1 |
---|
188 | datY1 = i1 |
---|
189 | datE1 = e1 |
---|
190 | datX2 = q2 |
---|
191 | datY2 = i2 |
---|
192 | datE2 = e2 |
---|
193 | Vaxis = last |
---|
194 | else: |
---|
195 | datX1 = np.append(datX1,q1) |
---|
196 | datY1 = np.append(datY1,i1) |
---|
197 | datE1 = np.append(datE1,e1) |
---|
198 | datX2 = np.append(datX2,q2) |
---|
199 | datY2 = np.append(datY2,i2) |
---|
200 | datE2 = np.append(datE2,e2) |
---|
201 | Vaxis += ','+last |
---|
202 | nr += 1 |
---|
203 | DeleteWorkspace(tempWS) |
---|
204 | DeleteWorkspace('__eq1') |
---|
205 | DeleteWorkspace('__eq2') |
---|
206 | if (nr == 1): |
---|
207 | ename = first[:-1] |
---|
208 | else: |
---|
209 | ename = first+'to_'+last |
---|
210 | e1WS = ename+'_eq1' |
---|
211 | e2WS = ename+'_eq2' |
---|
212 | elwWS = ename+'_elw' # temporary fix to do plotting |
---|
213 | CreateWorkspace(OutputWorkspace=elwWS, DataX=datX1, DataY=datY1, DataE=datE1, |
---|
214 | Nspec=nr, UnitX='MomentumTransfer') |
---|
215 | CreateWorkspace(OutputWorkspace=e1WS, DataX=datX1, DataY=datY1, DataE=datE1, |
---|
216 | Nspec=nr, UnitX='MomentumTransfer', VerticalAxisUnit='Text', VerticalAxisValues=Vaxis) |
---|
217 | replace_workspace_axis(e1WS, Vrun, '') |
---|
218 | CreateWorkspace(OutputWorkspace=e2WS, DataX=datX2, DataY=datY2, DataE=datE2, |
---|
219 | Nspec=nr, UnitX='QSquared', VerticalAxisUnit='Text', VerticalAxisValues=Vaxis) |
---|
220 | replace_workspace_axis(e2WS, Vrun, '') |
---|
221 | if Save: |
---|
222 | e1_path = os.path.join(workdir, e1WS+'.nxs') # path name for nxs file |
---|
223 | e2_path = os.path.join(workdir, e2WS+'.nxs') # path name for nxs file |
---|
224 | if Verbose: |
---|
225 | logger.notice('Creating file : '+e1_path) |
---|
226 | logger.notice('Creating file : '+e2_path) |
---|
227 | SaveNexusProcessed(InputWorkspace=e1WS, Filename=e1_path) |
---|
228 | SaveNexusProcessed(InputWorkspace=e2WS, Filename=e2_path) |
---|
229 | if Plot: |
---|
230 | elwinPlot(e1WS,e2WS) |
---|
231 | EndTime('Elwin') |
---|
232 | return e1WS,e2WS |
---|
233 | |
---|
234 | def elwinPlot(eq1,eq2): |
---|
235 | nhist = mtd[eq1].getNumberHistograms() # no. of hist/groups in sam |
---|
236 | nBins = mtd[eq1].blocksize() |
---|
237 | lastXeq1 = mtd[eq1].readX(0)[nBins-1] |
---|
238 | graph1 = mp.plotSpectrum(eq1, range(0,nhist)) |
---|
239 | layer1 = graph1.activeLayer() |
---|
240 | layer1.setScale(mp.Layer.Bottom, 0.0, lastXeq1) |
---|
241 | layer1.setAxisTitle(mp.Layer.Left,'Elastic Intensity') |
---|
242 | nBins = mtd[eq2].blocksize() |
---|
243 | lastXeq2 = mtd[eq2].readX(0)[nBins-1] |
---|
244 | graph2 = mp.plotSpectrum(eq2, range(0,nhist)) |
---|
245 | layer2 = graph2.activeLayer() |
---|
246 | layer2.setScale(mp.Layer.Bottom, 0.0, lastXeq2) |
---|
247 | layer2.setAxisTitle(mp.Layer.Left,'log(Elastic Intensity)') |
---|
248 | |
---|
249 | ############################################################################## |
---|
250 | # Fury |
---|
251 | ############################################################################## |
---|
252 | |
---|
253 | def furyPlot(inWS, spec): |
---|
254 | graph = mp.plotSpectrum(inWS, spec) |
---|
255 | layer = graph.activeLayer() |
---|
256 | layer.setScale(mp.Layer.Left, 0, 1.0) |
---|
257 | |
---|
258 | def fury(sam_files, res_file, rebinParam, RES=True, Save=False, Verbose=False, |
---|
259 | Plot=False): |
---|
260 | StartTime('Fury') |
---|
261 | Verbose = True |
---|
262 | workdir = config['defaultsave.directory'] |
---|
263 | LoadNexus(Filename=sam_files[0], OutputWorkspace='__sam_tmp') # SAMPLE |
---|
264 | nsam,npt = CheckHistZero('__sam_tmp') |
---|
265 | Xin = mtd['__sam_tmp'].readX(0) |
---|
266 | d1 = Xin[1]-Xin[0] |
---|
267 | if d1 < 1e-8: |
---|
268 | error = 'Data energy bin is zero' |
---|
269 | logger.notice('ERROR *** ' + error) |
---|
270 | sys.exit(error) |
---|
271 | d2 = Xin[npt-1]-Xin[npt-2] |
---|
272 | dmin = min(d1,d2) |
---|
273 | pars = rebinParam.split(',') |
---|
274 | if (float(pars[1]) <= dmin): |
---|
275 | error = 'EWidth = ' + pars[1] + ' < smallest Eincr = ' + str(dmin) |
---|
276 | logger.notice('ERROR *** ' + error) |
---|
277 | sys.exit(error) |
---|
278 | outWSlist = [] |
---|
279 | # Process RES Data Only Once |
---|
280 | if Verbose: |
---|
281 | logger.notice('Reading RES file : '+res_file) |
---|
282 | LoadNexus(Filename=res_file, OutputWorkspace='res_data') # RES |
---|
283 | CheckAnalysers('__sam_tmp','res_data',Verbose) |
---|
284 | nres,nptr = CheckHistZero('res_data') |
---|
285 | if nres > 1: |
---|
286 | CheckHistSame('__sam_tmp','Sample','res_data','Resolution') |
---|
287 | DeleteWorkspace('__sam_tmp') |
---|
288 | Rebin(InputWorkspace='res_data', OutputWorkspace='res_data', Params=rebinParam) |
---|
289 | Integration(InputWorkspace='res_data', OutputWorkspace='res_int') |
---|
290 | ConvertToPointData(InputWorkspace='res_data', OutputWorkspace='res_data') |
---|
291 | ExtractFFTSpectrum(InputWorkspace='res_data', OutputWorkspace='res_fft', FFTPart=2) |
---|
292 | Divide(LHSWorkspace='res_fft', RHSWorkspace='res_int', OutputWorkspace='res') |
---|
293 | for sam_file in sam_files: |
---|
294 | (direct, filename) = os.path.split(sam_file) |
---|
295 | (root, ext) = os.path.splitext(filename) |
---|
296 | if (ext == '.nxs'): # input is file |
---|
297 | if Verbose: |
---|
298 | logger.notice('Reading sample file : '+sam_file) |
---|
299 | LoadNexus(Filename=sam_file, OutputWorkspace='sam_data') # SAMPLE |
---|
300 | Rebin(InputWorkspace='sam_data', OutputWorkspace='sam_data', Params=rebinParam) |
---|
301 | else: # input is workspace |
---|
302 | Rebin(InputWorkspace=sam_file, OutputWorkspace='sam_data', Params=rebinParam) |
---|
303 | Integration(InputWorkspace='sam_data', OutputWorkspace='sam_int') |
---|
304 | ConvertToPointData(InputWorkspace='sam_data', OutputWorkspace='sam_data') |
---|
305 | ExtractFFTSpectrum(InputWorkspace='sam_data', OutputWorkspace='sam_fft', FFTPart=2) |
---|
306 | Divide(LHSWorkspace='sam_fft', RHSWorkspace='sam_int', OutputWorkspace='sam') |
---|
307 | savefile = getWSprefix('sam_data', root) + 'iqt' # Create save file name |
---|
308 | outWSlist.append(savefile) |
---|
309 | Divide(LHSWorkspace='sam', RHSWorkspace='res', OutputWorkspace=savefile) |
---|
310 | # Cleanup Sample Files |
---|
311 | DeleteWorkspace('sam_data') |
---|
312 | DeleteWorkspace('sam_int') |
---|
313 | DeleteWorkspace('sam_fft') |
---|
314 | DeleteWorkspace('sam') |
---|
315 | # Crop nonsense values off workspace |
---|
316 | bin = int(math.ceil(mtd[savefile].blocksize()/2.0)) |
---|
317 | binV = mtd[savefile].dataX(0)[bin] |
---|
318 | CropWorkspace(InputWorkspace=savefile, OutputWorkspace=savefile, XMax=binV) |
---|
319 | if Save: |
---|
320 | opath = os.path.join(workdir, savefile+'.nxs') # path name for nxs file |
---|
321 | SaveNexusProcessed(InputWorkspace=savefile, Filename=opath) |
---|
322 | if Verbose: |
---|
323 | logger.notice('Output file : '+opath) |
---|
324 | # Clean Up RES files |
---|
325 | DeleteWorkspace('res_data') |
---|
326 | DeleteWorkspace('res_int') |
---|
327 | DeleteWorkspace('res_fft') |
---|
328 | DeleteWorkspace('res') |
---|
329 | if Plot: |
---|
330 | specrange = range(0,mtd[outWSlist[0]].getNumberHistograms()) |
---|
331 | furyPlot(outWSlist, specrange) |
---|
332 | EndTime('Fury') |
---|
333 | return outWSlist |
---|
334 | |
---|
335 | ############################################################################## |
---|
336 | # FuryFit |
---|
337 | ############################################################################## |
---|
338 | |
---|
339 | def furyfitParsToWS(Table, Data, option): |
---|
340 | nopt = len(option) |
---|
341 | if nopt == 2: |
---|
342 | npeak = option[0] |
---|
343 | type = option[1] |
---|
344 | elif nopt == 4: |
---|
345 | npeak = 2 |
---|
346 | type = 'SE' |
---|
347 | else: |
---|
348 | logger.notice('Bad option : ' +option) |
---|
349 | Q = createQaxis(Data) |
---|
350 | nQ = len(Q) |
---|
351 | ws = mtd[Table] |
---|
352 | rCount = ws.rowCount() |
---|
353 | cCount = ws.columnCount() |
---|
354 | cName = ws.getColumnNames() |
---|
355 | Qa = np.array(Q) |
---|
356 | A0v = ws.column(1) #bgd value |
---|
357 | A0e = ws.column(2) #bgd error |
---|
358 | Iy1 = ws.column(5) #intensity1 value |
---|
359 | Ie1 = ws.column(2) #intensity1 error = bgd |
---|
360 | dataX = Qa |
---|
361 | dataY = np.array(A0v) |
---|
362 | dataE = np.array(A0e) |
---|
363 | names = cName[1] |
---|
364 | dataX = np.append(dataX,Qa) |
---|
365 | dataY = np.append(dataY,np.array(Iy1)) |
---|
366 | dataE = np.append(dataE,np.array(Ie1)) |
---|
367 | names += ","+cName[5] |
---|
368 | Ty1 = ws.column(7) #tau1 value |
---|
369 | Te1 = ws.column(8) #tau1 error |
---|
370 | dataX = np.append(dataX,Qa) |
---|
371 | dataY = np.append(dataY,np.array(Ty1)) |
---|
372 | dataE = np.append(dataE,np.array(Te1)) |
---|
373 | names += ","+cName[7] |
---|
374 | nSpec = 3 |
---|
375 | if npeak == 1: |
---|
376 | By1 = ws.column(9) #beta1 value |
---|
377 | Be1 = ws.column(10) #beta2 error |
---|
378 | dataX = np.append(dataX,Qa) |
---|
379 | dataY = np.append(dataY,np.array(By1)) |
---|
380 | dataE = np.append(dataE,np.array(Be1)) |
---|
381 | names += ","+cName[9] |
---|
382 | nSpec += 1 |
---|
383 | if npeak == 2: |
---|
384 | Iy2 = ws.column(9) #intensity2 value |
---|
385 | Ie2 = ws.column(10) #intensity2 error |
---|
386 | dataX = np.append(dataX,Qa) |
---|
387 | dataY = np.append(dataY,np.array(Iy2)) |
---|
388 | dataE = np.append(dataE,np.array(Ie2)) |
---|
389 | names += ","+cName[9] |
---|
390 | nSpec += 1 |
---|
391 | Ty2 = ws.column(11) #tau2 value |
---|
392 | Te2 = ws.column(12) #tau2 error |
---|
393 | dataX = np.append(dataX,Qa) |
---|
394 | dataY = np.append(dataY,np.array(Ty2)) |
---|
395 | dataE = np.append(dataE,np.array(Te2)) |
---|
396 | names += ","+cName[11] |
---|
397 | nSpec += 1 |
---|
398 | wsname = Table + "_Workspace" |
---|
399 | CreateWorkspace(OutputWorkspace=wsname, DataX=dataX, DataY=dataY, DataE=dataE, |
---|
400 | Nspec=nSpec, UnitX='MomentumTransfer', VerticalAxisUnit='Text', |
---|
401 | VerticalAxisValues=names) |
---|
402 | return wsname |
---|
403 | |
---|
404 | def furyfitPlotSeq(inputWS, Plot): |
---|
405 | nHist = mtd[inputWS].getNumberHistograms() |
---|
406 | if ( Plot == 'All' ): |
---|
407 | mp.plotSpectrum(inputWS, range(0, nHist), True) |
---|
408 | return |
---|
409 | plotSpecs = [] |
---|
410 | if ( Plot == 'Intensity' ): |
---|
411 | res = 'Intensity$' |
---|
412 | if ( Plot == 'Tau' ): |
---|
413 | res = 'Tau$' |
---|
414 | elif ( Plot == 'Beta' ): |
---|
415 | res = 'Beta$' |
---|
416 | for i in range(0, nHist): |
---|
417 | title = mtd[inputWS].getAxis(1).label(i) |
---|
418 | if ( re.search(res, title) ): |
---|
419 | plotSpecs.append(i) |
---|
420 | mp.plotSpectrum(inputWS, plotSpecs, True) |
---|
421 | |
---|
422 | def furyfitSeq(inputWS, func, ftype, startx, endx, Save, Plot, Verbose = True): |
---|
423 | StartTime('FuryFit') |
---|
424 | workdir = config['defaultsave.directory'] |
---|
425 | input = inputWS+',i0' |
---|
426 | nHist = mtd[inputWS].getNumberHistograms() |
---|
427 | for i in range(1,nHist): |
---|
428 | input += ';'+inputWS+',i'+str(i) |
---|
429 | outNm = getWSprefix(inputWS) + 'fury_' + ftype + "0_to_" + str(nHist-1) |
---|
430 | option = ftype[:-2] |
---|
431 | if Verbose: |
---|
432 | logger.notice('Option: '+option) |
---|
433 | logger.notice(func) |
---|
434 | PlotPeakByLogValue(Input=input, OutputWorkspace=outNm, Function=func, |
---|
435 | StartX=startx, EndX=endx, FitType='Sequential') |
---|
436 | wsname = furyfitParsToWS(outNm, inputWS, option) |
---|
437 | RenameWorkspace(InputWorkspace=outNm, OutputWorkspace=outNm+"_Parameters") |
---|
438 | if Save: |
---|
439 | opath = os.path.join(workdir, wsname+'.nxs') # path name for nxs file |
---|
440 | SaveNexusProcessed(InputWorkspace=wsname, Filename=opath) |
---|
441 | if Verbose: |
---|
442 | logger.notice('Output file : '+opath) |
---|
443 | if ( Plot != 'None' ): |
---|
444 | furyfitPlotSeq(wsname, Plot) |
---|
445 | EndTime('FuryFit') |
---|
446 | return mtd[wsname] |
---|
447 | |
---|
448 | def furyfitMultParsToWS(Table, Data): |
---|
449 | dataX = [] |
---|
450 | dataA0v = [] |
---|
451 | dataA0e = [] |
---|
452 | dataY1 = [] |
---|
453 | dataE1 = [] |
---|
454 | dataY2 = [] |
---|
455 | dataE2 = [] |
---|
456 | dataY3 = [] |
---|
457 | dataE3 = [] |
---|
458 | ws = mtd[Table+'_Parameters'] |
---|
459 | rCount = ws.rowCount() |
---|
460 | cCount = ws.columnCount() |
---|
461 | logger.notice(' Cols : '+str(cCount)) |
---|
462 | nSpec = ( rCount - 1 ) / 5 |
---|
463 | for spec in range(0,nSpec): |
---|
464 | A0val = 1 |
---|
465 | A0err = 2 |
---|
466 | ival = 5 #intensity value |
---|
467 | ierr = 6 #intensity error |
---|
468 | tval = 7 #tau value |
---|
469 | terr = 8 #tau error |
---|
470 | bval = 9 #beta value |
---|
471 | bval = 10 #beta error |
---|
472 | dataX.append(spec) |
---|
473 | dataA0v.append(ws.cell(spec,A0val)) |
---|
474 | dataA0e.append(ws.cell(spec,A0err)) |
---|
475 | dataY1.append(ws.cell(spec,ival)) |
---|
476 | dataE1.append(ws.cell(spec,A0err)) |
---|
477 | dataY2.append(ws.cell(spec,tval)) |
---|
478 | dataE2.append(ws.cell(spec,terr)) |
---|
479 | dataY3.append(ws.cell(spec,bval)) |
---|
480 | dataE3.append(ws.cell(spec,berr)) |
---|
481 | suffix = 'S' |
---|
482 | wsname = Table + '_' + suffix |
---|
483 | CreateWorkspace(OutputWorkspace=wsname, DataX=dataX, DataY=dataY1, DataE=dataE1, |
---|
484 | Nspec=1, UnitX='MomentumTransfer', VerticalAxisUnit='Text', |
---|
485 | VerticalAxisValues='Intensity') |
---|
486 | CreateWorkspace(OutputWorkspace='__multmp', DataX=dataX, DataY=dataY2, DataE=dataE2, |
---|
487 | Nspec=1, UnitX='MomentumTransfer', VerticalAxisUnit='Text', |
---|
488 | VerticalAxisValues='Tau') |
---|
489 | ConjoinWorkspaces(InputWorkspace1=wsname, InputWorkspace2='__multmp', CheckOverlapping=False) |
---|
490 | CreateWorkspace(OutputWorkspace='__multmp', DataX=dataX, DataY=dataY3, DataE=dataE3, |
---|
491 | Nspec=1, UnitX='MomentumTransfer', VerticalAxisUnit='Text', |
---|
492 | VerticalAxisValues='Beta') |
---|
493 | ConjoinWorkspaces(InputWorkspace1=wsname, InputWorkspace2='__multmp', CheckOverlapping=False) |
---|
494 | return wsname |
---|
495 | |
---|
496 | def furyfitPlotMult(inputWS, Plot): |
---|
497 | nHist = mtd[inputWS].getNumberHistograms() |
---|
498 | if ( Plot == 'All' ): |
---|
499 | mp.plotSpectrum(inputWS, range(0, nHist)) |
---|
500 | return |
---|
501 | plotSpecs = [] |
---|
502 | if ( Plot == 'Intensity' ): |
---|
503 | mp.plotSpectrum(inputWS, 0, True) |
---|
504 | if ( Plot == 'Tau' ): |
---|
505 | mp.plotSpectrum(inputWS, 1, True) |
---|
506 | elif ( Plot == 'Beta' ): |
---|
507 | mp.plotSpectrum(inputWS, 2, True) |
---|
508 | |
---|
509 | def furyfitMult(inputWS, func, startx, endx, Save, Plot): |
---|
510 | StartTime('FuryFit Mult') |
---|
511 | Verbose = True |
---|
512 | workdir = config['defaultsave.directory'] |
---|
513 | input = inputWS+',i0' |
---|
514 | nHist = mtd[inputWS].getNumberHistograms() |
---|
515 | for i in range(1,nHist): |
---|
516 | input += ';'+inputWS+',i'+str(i) |
---|
517 | outNm = getWSprefix(inputWS) + 'fury' |
---|
518 | f1 = """( |
---|
519 | composite=CompositeFunctionMW,Workspace=$WORKSPACE$,WSParam=(WorkspaceIndex=$INDEX$); |
---|
520 | name=LinearBackground,A0=0,A1=0,ties=(A1=0); |
---|
521 | name=UserFunction,Formula=Intensity*exp(-(x/Tau)^Beta),Intensity=1.0,Tau=0.1,Beta=1;ties=(f1.Intensity=1-f0.A0) |
---|
522 | ); |
---|
523 | """.replace('$WORKSPACE$',inputWS) |
---|
524 | func= 'composite=MultiBG;' |
---|
525 | ties='ties=(' |
---|
526 | for i in range(0,nHist): |
---|
527 | func+=f1.replace('$INDEX$',str(i)) |
---|
528 | if i > 0: |
---|
529 | ties += 'f' + str(i) + '.f1.Beta=f0.f1.Beta' |
---|
530 | if i < nHist-1: |
---|
531 | ties += ',' |
---|
532 | ties+=')' |
---|
533 | func += ties |
---|
534 | logger.notice(func) |
---|
535 | Fit(InputWorkspace=inputWS,Function=func,Output=outNm) |
---|
536 | wsname = furyfitMultParsToWS(outNm, inputWS) |
---|
537 | if Save: |
---|
538 | opath = os.path.join(workdir, wsname+'.nxs') # path name for nxs file |
---|
539 | SaveNexusProcessed(InputWorkspace=wsname, Filename=opath) |
---|
540 | if Verbose: |
---|
541 | logger.notice('Output file : '+opath) |
---|
542 | if ( Plot != 'None' ): |
---|
543 | furyfitPlotMult(wsname, Plot) |
---|
544 | EndTime('FuryFit') |
---|
545 | |
---|
546 | ############################################################################## |
---|
547 | # MSDFit |
---|
548 | ############################################################################## |
---|
549 | |
---|
550 | def msdfitParsToWS(Table, xData): |
---|
551 | dataX = xData |
---|
552 | ws = mtd[Table+'_Table'] |
---|
553 | rCount = ws.rowCount() |
---|
554 | yA0 = ws.column(1) |
---|
555 | eA0 = ws.column(2) |
---|
556 | yA1 = ws.column(3) |
---|
557 | dataY1 = map(lambda x : -x, yA1) |
---|
558 | eA1 = ws.column(4) |
---|
559 | wsname = Table |
---|
560 | CreateWorkspace(OutputWorkspace=wsname+'_a0', DataX=dataX, DataY=yA0, DataE=eA0, |
---|
561 | Nspec=1, UnitX='') |
---|
562 | CreateWorkspace(OutputWorkspace=wsname+'_a1', DataX=dataX, DataY=dataY1, DataE=eA1, |
---|
563 | Nspec=1, UnitX='') |
---|
564 | group = wsname+'_a0,'+wsname+'_a1' |
---|
565 | GroupWorkspaces(InputWorkspaces=group,OutputWorkspace=wsname) |
---|
566 | return wsname |
---|
567 | |
---|
568 | def msdfitPlotSeq(inputWS, xlabel): |
---|
569 | msd_plot = mp.plotSpectrum(inputWS+'_a1',0,True) |
---|
570 | msd_layer = msd_plot.activeLayer() |
---|
571 | msd_layer.setAxisTitle(mp.Layer.Bottom,xlabel) |
---|
572 | msd_layer.setAxisTitle(mp.Layer.Left,'<u2>') |
---|
573 | |
---|
574 | def msdfitPlotFits(lniWS, fitWS, n): |
---|
575 | mfit_plot = mp.plotSpectrum(lniWS,n,True) |
---|
576 | mfit_layer = mfit_plot.activeLayer() |
---|
577 | mfit_layer.setAxisTitle(mp.Layer.Left,'log(Elastic Intensity)') |
---|
578 | mp.mergePlots(mfit_plot,mp.plotSpectrum(fitWS+'_line',n,False)) |
---|
579 | |
---|
580 | def msdfit(inputs, startX, endX, Save=False, Verbose=True, Plot=True): |
---|
581 | Verbose = True |
---|
582 | StartTime('msdFit') |
---|
583 | workdir = config['defaultsave.directory'] |
---|
584 | log_type = 'sample' |
---|
585 | file = inputs[0] |
---|
586 | (direct, filename) = os.path.split(file) |
---|
587 | (root, ext) = os.path.splitext(filename) |
---|
588 | (instr, first) = getInstrRun(filename) |
---|
589 | if Verbose: |
---|
590 | logger.notice('Reading Run : '+file) |
---|
591 | LoadNexusProcessed(FileName=file, OutputWorkspace=root) |
---|
592 | nHist = mtd[root].getNumberHistograms() |
---|
593 | nfirst = int(first) |
---|
594 | file_list = [] |
---|
595 | run_list = [] |
---|
596 | x_list = [] |
---|
597 | for nr in range(0, nHist): |
---|
598 | nsam,ntc = CheckHistZero(root) |
---|
599 | run_name = instr + str(mtd[root].getAxis(1).label(nr)) |
---|
600 | lnWS = run_name+'_lnI' |
---|
601 | file_list.append(lnWS) |
---|
602 | ExtractSingleSpectrum(InputWorkspace=root, OutputWorkspace=lnWS, |
---|
603 | WorkspaceIndex=nr) |
---|
604 | log_name = run_name+'_'+log_type |
---|
605 | log_file = log_name+'.txt' |
---|
606 | log_path = FileFinder.getFullPath(log_file) |
---|
607 | if (log_path == ''): |
---|
608 | logger.notice(' Run : '+run_name +' ; Temperature file not found') |
---|
609 | xval = int(run_name[-3:]) |
---|
610 | xlabel = 'Run' |
---|
611 | else: |
---|
612 | logger.notice('Found '+log_path) |
---|
613 | LoadLog(Workspace=root, Filename=log_path) |
---|
614 | run_logs = mtd[root].getRun() |
---|
615 | tmp = run_logs[log_name].value |
---|
616 | temp = tmp[len(tmp)-1] |
---|
617 | logger.notice(' Run : '+run_name+' ; Temperature = '+str(temp)) |
---|
618 | xval = temp |
---|
619 | xlabel = 'Temperature (K)' |
---|
620 | last = str(nr) |
---|
621 | if (nr == 0): |
---|
622 | first = run_name |
---|
623 | run_list = lnWS |
---|
624 | else: |
---|
625 | run_list += ';'+lnWS |
---|
626 | x_list.append(xval) |
---|
627 | nr += 1 |
---|
628 | mname = root[:-4] |
---|
629 | msdWS = mname+'_msd' |
---|
630 | if Verbose: |
---|
631 | logger.notice('Fitting Runs '+mname) |
---|
632 | logger.notice('Q-range from '+str(startX)+' to '+str(endX)) |
---|
633 | function = 'name=LinearBackground, A0=0, A1=0' |
---|
634 | PlotPeakByLogValue(Input=run_list, OutputWorkspace=msdWS+'_Table', Function=function, |
---|
635 | StartX=startX, EndX=endX, FitType = 'Sequential') |
---|
636 | msdfitParsToWS(msdWS, x_list) |
---|
637 | nr = 0 |
---|
638 | lniWS = mname+'_lnI' |
---|
639 | fitWS = mname+'_Fit' |
---|
640 | a0 = mtd[msdWS+'_a0'].readY(0) |
---|
641 | a1 = mtd[msdWS+'_a1'].readY(0) |
---|
642 | for nr in range(0, nHist): |
---|
643 | inWS = file_list[nr] |
---|
644 | CropWorkspace(InputWorkspace=inWS,OutputWorkspace='__data',XMin=0.95*startX,XMax=1.05*endX) |
---|
645 | xin = mtd['__data'].readX(0) |
---|
646 | nxd = len(xin)-1 |
---|
647 | xd = [] |
---|
648 | yd = [] |
---|
649 | ed = [] |
---|
650 | for n in range(0,nxd): |
---|
651 | line = a0[nr] - a1[nr]*xin[n] |
---|
652 | xd.append(xin[n]) |
---|
653 | yd.append(line) |
---|
654 | ed.append(0.0) |
---|
655 | xd.append(xin[nxd]) |
---|
656 | CreateWorkspace(OutputWorkspace='__line', DataX=xd, DataY=yd, DataE=ed, |
---|
657 | Nspec=1) |
---|
658 | if (nr == 0): |
---|
659 | RenameWorkspace(InputWorkspace='__data',OutputWorkspace=fitWS+'_data') |
---|
660 | RenameWorkspace(InputWorkspace='__line',OutputWorkspace=fitWS+'_line') |
---|
661 | else: |
---|
662 | ConjoinWorkspaces(InputWorkspace1=fitWS+'_data', InputWorkspace2='__data', CheckOverlapping=False) |
---|
663 | ConjoinWorkspaces(InputWorkspace1=fitWS+'_line', InputWorkspace2='__line', CheckOverlapping=False) |
---|
664 | nr += 1 |
---|
665 | group = fitWS+'_data,'+ fitWS+'_line' |
---|
666 | GroupWorkspaces(InputWorkspaces=group,OutputWorkspace=fitWS) |
---|
667 | DeleteWorkspace(inWS) |
---|
668 | if Plot: |
---|
669 | msdfitPlotSeq(msdWS, xlabel) |
---|
670 | msdfitPlotFits(root, fitWS, 0) |
---|
671 | if Save: |
---|
672 | msd_path = os.path.join(workdir, msdWS+'.nxs') # path name for nxs file |
---|
673 | SaveNexusProcessed(InputWorkspace=msdWS, Filename=msd_path, Title=msdWS) |
---|
674 | if Verbose: |
---|
675 | logger.notice('Output msd file : '+msd_path) |
---|
676 | EndTime('msdFit') |
---|
677 | return msdWS |
---|
678 | |
---|
679 | def plotInput(inputfiles,spectra=[]): |
---|
680 | OneSpectra = False |
---|
681 | if len(spectra) != 2: |
---|
682 | spectra = [spectra[0], spectra[0]] |
---|
683 | OneSpectra = True |
---|
684 | workspaces = [] |
---|
685 | for file in inputfiles: |
---|
686 | root = LoadNexus(Filename=file) |
---|
687 | if not OneSpectra: |
---|
688 | GroupDetectors(root, root, |
---|
689 | DetectorList=range(spectra[0],spectra[1]+1) ) |
---|
690 | workspaces.append(root) |
---|
691 | if len(workspaces) > 0: |
---|
692 | graph = mp.plotSpectrum(workspaces,0) |
---|
693 | layer = graph.activeLayer().setTitle(", ".join(workspaces)) |
---|
694 | |
---|
695 | ############################################################################## |
---|
696 | # Corrections |
---|
697 | ############################################################################## |
---|
698 | |
---|
699 | def CubicFit(inputWS, spec, Verbose=False): |
---|
700 | '''Uses the Mantid Fit Algorithm to fit a quadratic to the inputWS |
---|
701 | parameter. Returns a list containing the fitted parameter values.''' |
---|
702 | function = 'name=Quadratic, A0=1, A1=0, A2=0' |
---|
703 | fit = Fit(Function=function, InputWorkspace=inputWS, WorkspaceIndex=spec, |
---|
704 | CreateOutput=True, Output='Fit') |
---|
705 | table = mtd['Fit_Parameters'] |
---|
706 | A0 = table.cell(0,1) |
---|
707 | A1 = table.cell(1,1) |
---|
708 | A2 = table.cell(2,1) |
---|
709 | Abs = [A0, A1, A2] |
---|
710 | if Verbose: |
---|
711 | logger.notice('Group '+str(spec)+' of '+inputWS+' ; fit coefficients are : '+str(Abs)) |
---|
712 | return Abs |
---|
713 | |
---|
714 | def applyCorrections(inputWS, canWS, corr, Verbose=False): |
---|
715 | '''Through the PolynomialCorrection algorithm, makes corrections to the |
---|
716 | input workspace based on the supplied correction values.''' |
---|
717 | # Corrections are applied in Lambda (Wavelength) |
---|
718 | efixed = getEfixed(inputWS) # Get efixed |
---|
719 | theta,Q = GetThetaQ(inputWS) |
---|
720 | sam_name = getWSprefix(inputWS) |
---|
721 | ConvertUnits(InputWorkspace=inputWS, OutputWorkspace=inputWS, Target='Wavelength', |
---|
722 | EMode='Indirect', EFixed=efixed) |
---|
723 | if canWS != '': |
---|
724 | (instr, can_run) = getInstrRun(canWS) |
---|
725 | corrections = [corr+'_1', corr+'_2', corr+'_3', corr+'_4'] |
---|
726 | CorrectedWS = sam_name +'Correct_'+ can_run |
---|
727 | ConvertUnits(InputWorkspace=canWS, OutputWorkspace=canWS, Target='Wavelength', |
---|
728 | EMode='Indirect', EFixed=efixed) |
---|
729 | else: |
---|
730 | corrections = [corr+'_1'] |
---|
731 | CorrectedWS = sam_name +'Corrected' |
---|
732 | nHist = mtd[inputWS].getNumberHistograms() |
---|
733 | # Check that number of histograms in each corrections workspace matches |
---|
734 | # that of the input (sample) workspace |
---|
735 | for ws in corrections: |
---|
736 | if ( mtd[ws].getNumberHistograms() != nHist ): |
---|
737 | raise ValueError('Mismatch: num of spectra in '+ws+' and inputWS') |
---|
738 | # Workspaces that hold intermediate results |
---|
739 | CorrectedSampleWS = '__csam' |
---|
740 | CorrectedCanWS = '__ccan' |
---|
741 | for i in range(0, nHist): # Loop through each spectra in the inputWS |
---|
742 | ExtractSingleSpectrum(InputWorkspace=inputWS, OutputWorkspace=CorrectedSampleWS, |
---|
743 | WorkspaceIndex=i) |
---|
744 | if ( len(corrections) == 1 ): |
---|
745 | Ass = CubicFit(corrections[0], i, Verbose) |
---|
746 | PolynomialCorrection(InputWorkspace=CorrectedSampleWS, OutputWorkspace=CorrectedSampleWS, |
---|
747 | Coefficients=Ass, Operation='Divide') |
---|
748 | if ( i == 0 ): |
---|
749 | CloneWorkspace(InputWorkspace=CorrectedSampleWS, OutputWorkspace=CorrectedWS) |
---|
750 | else: |
---|
751 | ConjoinWorkspaces(InputWorkspace1=CorrectedWS, InputWorkspace2=CorrectedSampleWS) |
---|
752 | else: |
---|
753 | ExtractSingleSpectrum(InputWorkspace=canWS, OutputWorkspace=CorrectedCanWS, |
---|
754 | WorkspaceIndex=i) |
---|
755 | Acc = CubicFit(corrections[3], i, Verbose) |
---|
756 | PolynomialCorrection(InputWorkspace=CorrectedCanWS, OutputWorkspace=CorrectedCanWS, |
---|
757 | Coefficients=Acc, Operation='Divide') |
---|
758 | Acsc = CubicFit(corrections[2], i, Verbose) |
---|
759 | PolynomialCorrection(InputWorkspace=CorrectedCanWS, OutputWorkspace=CorrectedCanWS, |
---|
760 | Coefficients=Acsc, Operation='Multiply') |
---|
761 | Minus(LHSWorkspace=CorrectedSampleWS, RHSWorkspace=CorrectedCanWS, OutputWorkspace=CorrectedSampleWS) |
---|
762 | Assc = CubicFit(corrections[1], i, Verbose) |
---|
763 | PolynomialCorrection(InputWorkspace=CorrectedSampleWS, OutputWorkspace=CorrectedSampleWS, |
---|
764 | Coefficients=Assc, Operation='Divide') |
---|
765 | if ( i == 0 ): |
---|
766 | CloneWorkspace(InputWorkspace=CorrectedSampleWS, OutputWorkspace=CorrectedWS) |
---|
767 | else: |
---|
768 | ConjoinWorkspaces(InputWorkspace1=CorrectedWS, InputWorkspace2=CorrectedSampleWS, |
---|
769 | CheckOverlapping=False) |
---|
770 | ConvertUnits(InputWorkspace=inputWS, OutputWorkspace=inputWS, Target='DeltaE', |
---|
771 | EMode='Indirect', EFixed=efixed) |
---|
772 | ConvertUnits(InputWorkspace=CorrectedWS, OutputWorkspace=CorrectedWS, Target='DeltaE', |
---|
773 | EMode='Indirect', EFixed=efixed) |
---|
774 | CloneWorkspace(InputWorkspace=CorrectedWS, OutputWorkspace=CorrectedWS+'_rqw') |
---|
775 | replace_workspace_axis(CorrectedWS+'_rqw', Q, 'MomentumTransfer') |
---|
776 | RenameWorkspace(InputWorkspace=CorrectedWS, OutputWorkspace=CorrectedWS+'_red') |
---|
777 | if canWS != '': |
---|
778 | DeleteWorkspace(CorrectedCanWS) |
---|
779 | ConvertUnits(InputWorkspace=canWS, OutputWorkspace=canWS, Target='DeltaE', |
---|
780 | EMode='Indirect', EFixed=efixed) |
---|
781 | DeleteWorkspace('Fit_NormalisedCovarianceMatrix') |
---|
782 | DeleteWorkspace('Fit_Parameters') |
---|
783 | DeleteWorkspace('Fit_Workspace') |
---|
784 | DeleteWorkspace('corrections') |
---|
785 | return CorrectedWS |
---|
786 | |
---|
787 | def abscorFeeder(sample, container, geom, useCor): |
---|
788 | '''Load up the necessary files and then passes them into the main |
---|
789 | applyCorrections routine.''' |
---|
790 | StartTime('ApplyCorrections') |
---|
791 | Verbose = True |
---|
792 | Save = True |
---|
793 | PlotResult = 'Both' |
---|
794 | PlotContrib = 'Spectrum' |
---|
795 | workdir = config['defaultsave.directory'] |
---|
796 | CheckAnalysers(sample,container,Verbose) |
---|
797 | s_hist,sxlen = CheckHistZero(sample) |
---|
798 | sam_name = getWSprefix(sample) |
---|
799 | if container != '': |
---|
800 | CheckHistSame(sample,'Sample',container,'Container') |
---|
801 | (instr, can_run) = getInstrRun(container) |
---|
802 | if useCor: |
---|
803 | if Verbose: |
---|
804 | text = 'Correcting sample ' + sample |
---|
805 | if container != '': |
---|
806 | text += ' with ' + container |
---|
807 | logger.notice(text) |
---|
808 | file = sam_name + geom +'_Abs.nxs' |
---|
809 | abs_path = os.path.join(workdir, file) # path name for nxs file |
---|
810 | if Verbose: |
---|
811 | logger.notice('Correction file :'+abs_path) |
---|
812 | LoadNexus(Filename=abs_path, OutputWorkspace='corrections') |
---|
813 | cor_result = applyCorrections(sample, container, 'corrections', Verbose) |
---|
814 | if Save: |
---|
815 | cred_path = os.path.join(workdir,cor_result+'_red.nxs') |
---|
816 | SaveNexusProcessed(InputWorkspace=cor_result+'_red',Filename=cred_path) |
---|
817 | if Verbose: |
---|
818 | logger.notice('Output file created : '+cred_path) |
---|
819 | plot_list = [cor_result+'_red',sample] |
---|
820 | if ( container != '' ): |
---|
821 | plot_list.append(container) |
---|
822 | if (PlotResult != 'None'): |
---|
823 | plotCorrResult(cor_result+'_rqw',PlotResult) |
---|
824 | if (PlotContrib != 'None'): |
---|
825 | plotCorrContrib(plot_list,0) |
---|
826 | else: |
---|
827 | if ( container == '' ): |
---|
828 | sys.exit('ERROR *** Invalid options - nothing to do!') |
---|
829 | else: |
---|
830 | sub_result = sam_name +'Subtract_'+ can_run |
---|
831 | if Verbose: |
---|
832 | logger.notice('Subtracting '+container+' from '+sample) |
---|
833 | Minus(LHSWorkspace=sample,RHSWorkspace=container,OutputWorkspace=sub_result) |
---|
834 | CloneWorkspace(InputWorkspace=sub_result, OutputWorkspace=sub_result+'_rqw') |
---|
835 | theta,Q = GetThetaQ(sample) |
---|
836 | replace_workspace_axis(sub_result+'_rqw', Q) |
---|
837 | RenameWorkspace(InputWorkspace=sub_result, OutputWorkspace=sub_result+'_red') |
---|
838 | if Save: |
---|
839 | sred_path = os.path.join(workdir,sub_result+'_red.nxs') |
---|
840 | SaveNexusProcessed(InputWorkspace=sub_result+'_red',Filename=sred_path) |
---|
841 | if Verbose: |
---|
842 | logger.notice('Output file created : '+sred_path) |
---|
843 | plot_list = [sub_result+'_red',sample] |
---|
844 | if (Plot != 'None'): |
---|
845 | plotCorrResult(sub_result+'_rqw',PlotResult) |
---|
846 | if (Plot != 'None'): |
---|
847 | plotCorrContrib(plot_list,0) |
---|
848 | EndTime('ApplyCorrections') |
---|
849 | |
---|
850 | def plotCorrResult(inWS,PlotResult): |
---|
851 | nHist = mtd[inWS].getNumberHistograms() |
---|
852 | if (Plot == 'Spectrum' or Plot == 'Both'): |
---|
853 | if nHist >= 10: #only plot up to 10 hists |
---|
854 | nHist = 10 |
---|
855 | plot_list = [] |
---|
856 | for i in range(0, nHist): |
---|
857 | plot_list.append(i) |
---|
858 | res_plot=mp.plotSpectrum(inWS,plot_list) |
---|
859 | if (Plot == 'Contour' or Plot == 'Both'): |
---|
860 | if nHist >= 5: #needs at least 5 hists for a contour |
---|
861 | mp.importMatrixWorkspace(inWS).plotGraph2D() |
---|
862 | |
---|
863 | def plotCorrContrib(plot_list,n): |
---|
864 | con_plot=mp.plotSpectrum(plot_list,n) |
---|
865 | |
---|
866 | def replace_workspace_axis(wsName, new_values, new_unit): |
---|
867 | from mantidsimple import createNumericAxis, mtd #temporary use of old API |
---|
868 | ax1 = createNumericAxis(len(new_values)) |
---|
869 | for i in range(len(new_values)): |
---|
870 | ax1.setValue(i, new_values[i]) |
---|
871 | if new_unit != '': |
---|
872 | ax1.setUnit(new_unit) |
---|
873 | mtd[wsName].replaceAxis(1, ax1) #axis=1 is vertical |
---|