1 | import math |
---|
2 | # arrays to fill |
---|
3 | resx=numpy.zeros(200) |
---|
4 | resy=numpy.zeros(200) |
---|
5 | rese=numpy.zeros(200) |
---|
6 | resChi=numpy.zeros(200) |
---|
7 | res0=numpy.zeros(200) |
---|
8 | res1=numpy.ones(200) |
---|
9 | resNZ=numpy.zeros(200) |
---|
10 | resIC=numpy.zeros(200) |
---|
11 | resICE=numpy.zeros(200) |
---|
12 | a=0.25 # asymmetry to simulate |
---|
13 | NB=1000 # number of (raw) bins |
---|
14 | x12arr=numpy.zeros(2*NB) |
---|
15 | y12arr=numpy.zeros(2*NB) |
---|
16 | e12arr=numpy.zeros(2*NB) |
---|
17 | ws=CreateWorkspace(x12arr,y12arr,e12arr,2,OutputWorkspace="Hello") |
---|
18 | for x in range(200): |
---|
19 | lam=math.exp((x-75.0)/10.0) # counts per bin, in absence of any signal. Log scale to show detail. |
---|
20 | lam1=lam*(1+a) |
---|
21 | lam2=lam*(1-a) # counts per bin in forward and backward banks |
---|
22 | Xarr=range(NB) # "time" |
---|
23 | Y1arr=numpy.random.poisson(lam1,NB) # measured forward counts |
---|
24 | E1arr=numpy.sqrt(Y1arr) # and their errors by the "standard" formula, Fit() will treat error=0 specially |
---|
25 | Y2arr=numpy.random.poisson(lam2,NB) |
---|
26 | E2arr=numpy.sqrt(Y2arr) |
---|
27 | ws.dataX(0)[:]=Xarr |
---|
28 | ws.dataY(0)[:]=Y1arr |
---|
29 | ws.dataE(0)[:]=E1arr |
---|
30 | ws.dataX(1)[:]=Xarr |
---|
31 | ws.dataY(1)[:]=Y2arr |
---|
32 | ws.dataE(1)[:]=E2arr |
---|
33 | AsymmetryCalc(InputWorkspace="Hello",OutputWorkspace="Asym",ForwardSpectra="0",BackwardSpectra="1",alpha=1.0) # re-generated asymmetry |
---|
34 | (stat,chisq,Covar,params,curves)=Fit(Function="name=FlatBackground,A0=0.1",InputWorkspace="Asym",Output="Asym") |
---|
35 | print lam," -> ",params.column(1)[0]," +- ",params.column(2)[0]," chisq=",chisq," st=",stat |
---|
36 | resx[x]=lam |
---|
37 | resy[x]=params.column(1)[0] |
---|
38 | rese[x]=params.column(2)[0] |
---|
39 | resNZ[x]=(len(Y1arr)-numpy.count_nonzero(Y1arr)+len(Y2arr)-numpy.count_nonzero(Y2arr))/(len(Y1arr)+len(Y2arr)+0.0) |
---|
40 | resChi[x]=chisq |
---|
41 | DeleteWorkspace("Asym") |
---|
42 | |
---|
43 | YS1=numpy.sum(Y1arr,dtype=numpy.float) # integral asymmetry of same data for comparison |
---|
44 | YS2=numpy.sum(Y2arr,dtype=numpy.float) |
---|
45 | if(YS1+YS2>0): |
---|
46 | resIC[x]=(YS1-YS2)/(YS1+YS2) |
---|
47 | resICE[x]=2.0*math.sqrt(YS1*YS2)*(YS1+YS2)**(-1.5) |
---|
48 | else: |
---|
49 | resIC[x]=float('NaN') |
---|
50 | resICE[x]=float('Inf') # no counts, asymmetry completely uncertain! |
---|
51 | |
---|
52 | DeleteWorkspace("Hello") |
---|
53 | CreateWorkspace(resx,resy,rese,1,OutputWorkspace="Summary") # what the fit thought the asymmetry was |
---|
54 | CreateWorkspace(resx,resNZ,res0,1,OutputWorkspace="FractionOfZeros") |
---|
55 | DiffOverErr=(resy-a)/rese |
---|
56 | CreateWorkspace(resx,DiffOverErr,res1,1,OutputWorkspace="NormalisedDifference") # if outside +-1 then systematic errors are significant |
---|
57 | CreateWorkspace(resx,resChi,res0,1,OutputWorkspace="ChiSquared") |
---|
58 | |
---|
59 | CreateWorkspace(resx,resIC,resICE,1,OutputWorkspace="IntegralCounted") |
---|
60 | |
---|
61 | p=plotSpectrum("Summary",0,True) |
---|
62 | l=p.activeLayer() |
---|
63 | l.setAxisScale(Layer.Bottom,0.001,1000000.0,Layer.Log10) |
---|
64 | |
---|
65 | p2=plotSpectrum("NormalisedDifference",0,True) |
---|
66 | l2=p2.activeLayer() |
---|
67 | l2.setAxisScale(Layer.Bottom,0.001,1000000.0,Layer.Log10) |
---|