1 | //---------------------------------------------------------------------- |
---|
2 | // Includes |
---|
3 | //---------------------------------------------------------------------- |
---|
4 | #include "Muon_DynamicKuboToyabe.h" |
---|
5 | #include <cmath> |
---|
6 | |
---|
7 | namespace Mantid |
---|
8 | { |
---|
9 | namespace CurveFitting |
---|
10 | { |
---|
11 | |
---|
12 | using namespace Kernel; |
---|
13 | using namespace API; |
---|
14 | |
---|
15 | DECLARE_FUNCTION(Muon_DynamicKuboToyabe) |
---|
16 | |
---|
17 | void Muon_DynamicKuboToyabe::init() |
---|
18 | { |
---|
19 | declareParameter("A", 0.2); |
---|
20 | declareParameter("Delta", 0.2); |
---|
21 | declareParameter("Field",0.0); |
---|
22 | declareParameter("hopping rate",0.0); |
---|
23 | declareParameter("endX",15); |
---|
24 | } |
---|
25 | |
---|
26 | //-------------------------------------------------------------------------------------------------------------------------------------- |
---|
27 | |
---|
28 | double midpnt(double func(const double, const double, const double,const double), |
---|
29 | const double a, const double b, const int n, const double g, const double w0) { |
---|
30 | // quote & modified from numerical recipe 2nd edtion (page147) |
---|
31 | |
---|
32 | double x,tnm,sum,del,ddel; |
---|
33 | int it,j; |
---|
34 | static double s; |
---|
35 | |
---|
36 | if (n==1) { return (s =0.5*(b-a)*func(a,g,w0,b)+func(b,g,w0,b)); |
---|
37 | } else { |
---|
38 | |
---|
39 | for (it=1,j=1;j<n-1;j++) it *= 3; |
---|
40 | tnm = it; |
---|
41 | del = (b-a)/(3*tnm); |
---|
42 | ddel=del+del; |
---|
43 | x = a+0.5*del; |
---|
44 | sum =0.0; |
---|
45 | for (j=0;j<it;j++) { |
---|
46 | sum += func(x,g,w0,b); |
---|
47 | x += ddel; |
---|
48 | sum += func(x,g,w0,b); |
---|
49 | x += del; |
---|
50 | } |
---|
51 | s=(s+(b-a)*sum/tnm)/3.0; |
---|
52 | return s; |
---|
53 | } |
---|
54 | } |
---|
55 | |
---|
56 | void polint (double* xa, double* ya, const double x, double& y, double& dy) { |
---|
57 | int i, m, ns = 0; |
---|
58 | double den, dif, dift, ho, hp, w; |
---|
59 | |
---|
60 | const int n = sizeof xa; |
---|
61 | double c[n],d[n]; |
---|
62 | dif = fabs(x-xa[0]); |
---|
63 | for (i=0;i<n;i++){ |
---|
64 | if((dift=fabs(x-xa[i]))<dif) { |
---|
65 | ns=i; |
---|
66 | dif=dift; |
---|
67 | } |
---|
68 | c[i]=ya[i]; |
---|
69 | d[i]=ya[i]; |
---|
70 | } |
---|
71 | y=ya[ns--]; |
---|
72 | for (m=1;m<n;m++) { |
---|
73 | for (i=0;i<n-m;i++) { |
---|
74 | |
---|
75 | ho=xa[i]-x; |
---|
76 | hp=xa[i+m]-x; |
---|
77 | w=c[i+1]-d[i]; |
---|
78 | // if((den=ho-hp)==0.0) error message!!!; delete next line. |
---|
79 | den=ho-hp; |
---|
80 | den=w/den; |
---|
81 | d[i]=hp*den; |
---|
82 | c[i]=ho*den; |
---|
83 | } |
---|
84 | y += (dy=(2*(ns+1)<(n-m) ? c[ns+1] : d[ns--])); |
---|
85 | |
---|
86 | } |
---|
87 | } |
---|
88 | |
---|
89 | |
---|
90 | double integral (double func(const double, const double, const double, const double), |
---|
91 | const double a, const double b, const double g, const double w0) { |
---|
92 | const int JMAX = 14, JMAXP = JMAX+1, K=5; |
---|
93 | const double EPS = 3.0e-9; //error smaller than this value |
---|
94 | int i,j; |
---|
95 | double ss,dss; |
---|
96 | double h[JMAXP], s[JMAX], h_t[K], s_t[K]; |
---|
97 | |
---|
98 | h[0] = 1.0; |
---|
99 | for (j=1; j<= JMAX; j++) { |
---|
100 | s[j-1]=midpnt(func,a,b,j,g,w0); |
---|
101 | if (j >= K) { |
---|
102 | for (i=0;i<K;i++) { |
---|
103 | h_t[i]=h[j-K+i]; |
---|
104 | s_t[i]=s[j-K+i]; |
---|
105 | } |
---|
106 | polint(h_t,s_t,0.0,ss,dss); |
---|
107 | if (fabs(dss) <= fabs(ss)) return ss; |
---|
108 | } |
---|
109 | h[j]=h[j-1]/9.0; |
---|
110 | } |
---|
111 | return 0.0; |
---|
112 | } |
---|
113 | |
---|
114 | |
---|
115 | //-------------------------------------------------------------------------------------------------------------------------------------- |
---|
116 | // cast all integers into doubles |
---|
117 | double ZFKT (const double q) |
---|
118 | { |
---|
119 | return((0.3333333333)+(0.6666666667)*(1.0-q)*exp(-q/2.0)); |
---|
120 | } |
---|
121 | //Zero field KuboToyabe function. |
---|
122 | |
---|
123 | |
---|
124 | double f1(const double x, const double G, const double w0, const double b) { |
---|
125 | |
---|
126 | return( exp(-G*G*x*x/2)*sin(w0*x)); |
---|
127 | } |
---|
128 | //integration function for general static KuboToyabe. |
---|
129 | |
---|
130 | double gz (const double x, const double G, const double F) |
---|
131 | { |
---|
132 | double w0 = 2.0*3.1415926536*0.01355342*F; |
---|
133 | // double Integral = 0; |
---|
134 | const double q = G*G*x*x; |
---|
135 | |
---|
136 | if (w0 == 0.0) { |
---|
137 | return (ZFKT(q)); |
---|
138 | } |
---|
139 | else { |
---|
140 | |
---|
141 | if (F>2.0*G) { w0 = 2*3.1415926*0.01355342*F ;} else { w0 =2*3.1415926*0.01355342*2.0*G; } |
---|
142 | |
---|
143 | double p = G*G/(w0*w0); |
---|
144 | double HKT = 1.0-2.0*p*(1-exp(-q/2.0)*cos(w0*x))+2.0*p*p*w0*integral(f1,0.0,x,G,w0); |
---|
145 | if (F>2.0*G) {return (HKT);} |
---|
146 | else {return (ZFKT(q)+ (F/2.0/G)*(HKT-ZFKT(q)));} |
---|
147 | |
---|
148 | } |
---|
149 | } |
---|
150 | |
---|
151 | |
---|
152 | |
---|
153 | |
---|
154 | |
---|
155 | |
---|
156 | void Muon_DynamicKuboToyabe::functionLocal(double* out, const double* xValues, const size_t nData)const |
---|
157 | { |
---|
158 | const double& A = getParameter("A"); |
---|
159 | const double& G = abs(getParameter("Delta")); |
---|
160 | const double& F = abs(getParameter("Field")); |
---|
161 | const double& v = abs(getParameter("hopping rate")); |
---|
162 | |
---|
163 | |
---|
164 | |
---|
165 | |
---|
166 | |
---|
167 | //do{stepsize=stepsize/10;}while (xValues[0]<stepsize); |
---|
168 | //make sure stepsize is smaller than spacing between xValues. |
---|
169 | |
---|
170 | |
---|
171 | |
---|
172 | |
---|
173 | const int n = 1000; |
---|
174 | const double stepsize = abs(getParameter("endX")/n); |
---|
175 | double funcG[n]; |
---|
176 | |
---|
177 | double Integral = 0.0; |
---|
178 | if (v == 0.0) { |
---|
179 | for (int i = 0; i < nData; i++) { |
---|
180 | out[i] = A*gz(xValues[i],G,F); |
---|
181 | } |
---|
182 | } |
---|
183 | // else if { |
---|
184 | else { |
---|
185 | for (int i = 0; i < n; i++) { |
---|
186 | if (v*i*stepsize>5.0 && v>10.0*G) { |
---|
187 | funcG[i] = funcG[i-1]*exp(-2*G*G*stepsize/v);//fast hopping approx |
---|
188 | } else { |
---|
189 | double Integral=0.0; |
---|
190 | for (int c = 1; c <= i; c++) { |
---|
191 | Integral= gz(c*stepsize,G,F)*exp(-v*c*stepsize)*funcG[i-c]*(stepsize) + Integral; |
---|
192 | } |
---|
193 | funcG[i] = (gz(i*stepsize,G,F)*exp(-v*i*stepsize) + v*Integral); |
---|
194 | } |
---|
195 | } |
---|
196 | for (int i = 0; i < nData; i++) { |
---|
197 | double a =xValues[i]/stepsize; |
---|
198 | out[i] = A*(funcG[int(a)]); |
---|
199 | } |
---|
200 | |
---|
201 | } |
---|
202 | } |
---|
203 | |
---|
204 | |
---|
205 | void Muon_DynamicKuboToyabe::functionDerivLocal(API::Jacobian* out, const double* xValues, const size_t nData) |
---|
206 | { |
---|
207 | calNumericalDeriv(out, xValues, nData); |
---|
208 | } |
---|
209 | |
---|
210 | |
---|
211 | |
---|
212 | |
---|
213 | } // namespace CurveFitting |
---|
214 | } // namespace Mantid |
---|