| 1 | from mantid.simpleapi import * |
|---|
| 2 | from IndirectImport import import_mantidplot |
|---|
| 3 | mp = import_mantidplot() |
|---|
| 4 | from IndirectCommon import * |
|---|
| 5 | from mantid import config, logger |
|---|
| 6 | import math, re, os.path, numpy as np |
|---|
| 7 | |
|---|
| 8 | ############################################################################## |
|---|
| 9 | # Misc. Helper Functions |
|---|
| 10 | ############################################################################## |
|---|
| 11 | |
|---|
| 12 | def split(l, n): |
|---|
| 13 | #Yield successive n-sized chunks from l. |
|---|
| 14 | for i in xrange(0, len(l), n): |
|---|
| 15 | yield l[i:i+n] |
|---|
| 16 | |
|---|
| 17 | def segment(l, fromIndex, toIndex): |
|---|
| 18 | for i in xrange(fromIndex, toIndex + 1): |
|---|
| 19 | yield l[i] |
|---|
| 20 | |
|---|
| 21 | def trimData(nSpec, vals, min, max): |
|---|
| 22 | result = [] |
|---|
| 23 | chunkSize = len(vals) / nSpec |
|---|
| 24 | assert min >= 0, 'trimData: min is less then zero' |
|---|
| 25 | assert max <= chunkSize - 1, 'trimData: max is greater than the number of spectra' |
|---|
| 26 | assert min <= max, 'trimData: min is greater than max' |
|---|
| 27 | chunks = split(vals,chunkSize) |
|---|
| 28 | for chunk in chunks: |
|---|
| 29 | seg = segment(chunk,min,max) |
|---|
| 30 | for val in seg: |
|---|
| 31 | result.append(val) |
|---|
| 32 | return result |
|---|
| 33 | |
|---|
| 34 | ############################################################################## |
|---|
| 35 | # ConvFit |
|---|
| 36 | ############################################################################## |
|---|
| 37 | |
|---|
| 38 | def getConvFitOption(ftype, bgd, Verbose): |
|---|
| 39 | if ftype[:5] == 'Delta': |
|---|
| 40 | delta = True |
|---|
| 41 | lor = ftype[5:6] |
|---|
| 42 | else: |
|---|
| 43 | delta = False |
|---|
| 44 | lor = ftype[:1] |
|---|
| 45 | options = [bgd, delta, int(lor)] |
|---|
| 46 | if Verbose: |
|---|
| 47 | logger.notice('Fit type : Delta = ' + str(options[1]) + ' ; Lorentzians = ' + str(options[2])) |
|---|
| 48 | logger.notice('Background type : ' + options[0]) |
|---|
| 49 | return options |
|---|
| 50 | |
|---|
| 51 | ############################################################################## |
|---|
| 52 | |
|---|
| 53 | def createConvFitFun(options, par, file): |
|---|
| 54 | bgd_fun = 'name=LinearBackground,A0=' |
|---|
| 55 | if options[0] == 'FixF': |
|---|
| 56 | bgd_fun = bgd_fun +str(par[0])+',A1=0,ties=(A0='+str(par[0])+',A1=0.0)' |
|---|
| 57 | if options[0] == 'FitF': |
|---|
| 58 | bgd_fun = bgd_fun +str(par[0])+',A1=0,ties=(A1=0.0)' |
|---|
| 59 | if options[0] == 'FitL': |
|---|
| 60 | bgd_fun = bgd_fun +str(par[0])+',A1='+str(par[1]) |
|---|
| 61 | if options[1]: |
|---|
| 62 | ip = 3 |
|---|
| 63 | else: |
|---|
| 64 | ip = 2 |
|---|
| 65 | pk_1 = '(composite=Convolution;name=Resolution, FileName="'+file+'"' |
|---|
| 66 | if options[2] >= 1: |
|---|
| 67 | lor_fun = 'name=Lorentzian,Amplitude='+str(par[ip])+',PeakCentre='+str(par[ip+1])+',HWHM='+str(par[ip+2]) |
|---|
| 68 | if options[2] == 2: |
|---|
| 69 | lor_2 = 'name=Lorentzian,Amplitude='+str(par[ip+3])+',PeakCentre='+str(par[ip+4])+',HWHM='+str(par[ip+5]) |
|---|
| 70 | lor_fun = lor_fun +';'+ lor_2 +';ties=(f0.PeakCentre=f1.PeakCentre)' |
|---|
| 71 | if options[1]: |
|---|
| 72 | delta_fun = 'name=DeltaFunction,Amplitude='+str(par[2]) |
|---|
| 73 | lor_fun = delta_fun +';' + lor_fun |
|---|
| 74 | func = bgd_fun +';'+ pk_1 +';('+ lor_fun +'))' |
|---|
| 75 | return func |
|---|
| 76 | |
|---|
| 77 | ############################################################################## |
|---|
| 78 | |
|---|
| 79 | def getConvFitResult(inputWS, resFile, outNm, ftype, bgd, Verbose): |
|---|
| 80 | options = getConvFitOption(ftype, bgd[:-2], Verbose) |
|---|
| 81 | params = mtd[outNm+'_Parameters'] |
|---|
| 82 | A0 = params.column(1) #bgd A0 value |
|---|
| 83 | A1 = params.column(3) #bgd A1 value |
|---|
| 84 | if options[1]: |
|---|
| 85 | ip = 7 |
|---|
| 86 | D1 = params.column(5) #delta value |
|---|
| 87 | else: |
|---|
| 88 | ip = 5 |
|---|
| 89 | if options[2] >= 1: |
|---|
| 90 | H1 = params.column(ip) #height1 value |
|---|
| 91 | C1 = params.column(ip+2) #centre1 value |
|---|
| 92 | W1 = params.column(ip+4) #width1 value |
|---|
| 93 | if options[2] == 2: |
|---|
| 94 | H2 = params.column(ip+6) #height2 value |
|---|
| 95 | C2 = params.column(ip+8) #centre2 value |
|---|
| 96 | W2 = params.column(ip+10) #width2 value |
|---|
| 97 | nHist = mtd[inputWS].getNumberHistograms() |
|---|
| 98 | for i in range(nHist): |
|---|
| 99 | paras = [A0[i], A1[i]] |
|---|
| 100 | if options[1]: |
|---|
| 101 | paras.append(D1[i]) |
|---|
| 102 | if options[2] >= 1: |
|---|
| 103 | paras.append(H1[i]) |
|---|
| 104 | paras.append(C1[i]) |
|---|
| 105 | paras.append(W1[i]) |
|---|
| 106 | if options[2] == 2: |
|---|
| 107 | paras.append(H2[i]) |
|---|
| 108 | paras.append(C2[i]) |
|---|
| 109 | paras.append(W2[i]) |
|---|
| 110 | func = createConvFitFun(options, paras, resFile) |
|---|
| 111 | if Verbose: |
|---|
| 112 | logger.notice('Fit func : '+func) |
|---|
| 113 | fitWS = outNm + '_Result_' |
|---|
| 114 | fout = fitWS + str(i) |
|---|
| 115 | Fit(Function=func,InputWorkspace=inputWS,WorkspaceIndex=i,Output=fout,MaxIterations=0) |
|---|
| 116 | unitx = mtd[fout+'_Workspace'].getAxis(0).setUnit("Label") |
|---|
| 117 | unitx.setLabel('Time' , 'ns') |
|---|
| 118 | RenameWorkspace(InputWorkspace=fout+'_Workspace', OutputWorkspace=fout) |
|---|
| 119 | DeleteWorkspace(fitWS+str(i)+'_NormalisedCovarianceMatrix') |
|---|
| 120 | DeleteWorkspace(fitWS+str(i)+'_Parameters') |
|---|
| 121 | if i == 0: |
|---|
| 122 | group = fout |
|---|
| 123 | else: |
|---|
| 124 | group += ',' + fout |
|---|
| 125 | GroupWorkspaces(InputWorkspaces=group,OutputWorkspace=fitWS[:-1]) |
|---|
| 126 | |
|---|
| 127 | ############################################################################## |
|---|
| 128 | |
|---|
| 129 | def confitParsToWS(Table, Data, specMin=0, specMax=-1): |
|---|
| 130 | if ( specMax == -1 ): |
|---|
| 131 | specMax = mtd[Data].getNumberHistograms() - 1 |
|---|
| 132 | dataX = createQaxis(Data) |
|---|
| 133 | xAxisVals = [] |
|---|
| 134 | xAxisTrimmed = [] |
|---|
| 135 | dataY = [] |
|---|
| 136 | dataE = [] |
|---|
| 137 | names = '' |
|---|
| 138 | ws = mtd[Table] |
|---|
| 139 | cName = ws.getColumnNames() |
|---|
| 140 | nSpec = ( ws.columnCount() - 1 ) / 2 |
|---|
| 141 | for spec in range(0,nSpec): |
|---|
| 142 | yCol = (spec*2)+1 |
|---|
| 143 | yAxis = cName[(spec*2)+1] |
|---|
| 144 | if re.search('HWHM$', yAxis) or re.search('Amplitude$', yAxis): |
|---|
| 145 | xAxisVals += dataX |
|---|
| 146 | if (len(names) > 0): |
|---|
| 147 | names += "," |
|---|
| 148 | names += yAxis |
|---|
| 149 | eCol = (spec*2)+2 |
|---|
| 150 | eAxis = cName[(spec*2)+2] |
|---|
| 151 | for row in range(0, ws.rowCount()): |
|---|
| 152 | dataY.append(ws.cell(row,yCol)) |
|---|
| 153 | dataE.append(ws.cell(row,eCol)) |
|---|
| 154 | else: |
|---|
| 155 | nSpec -= 1 |
|---|
| 156 | outNm = Table + "_Workspace" |
|---|
| 157 | xAxisTrimmed = trimData(nSpec, xAxisVals, specMin, specMax) |
|---|
| 158 | CreateWorkspace(OutputWorkspace=outNm, DataX=xAxisTrimmed, DataY=dataY, DataE=dataE, |
|---|
| 159 | Nspec=nSpec, UnitX='MomentumTransfer', VerticalAxisUnit='Text', |
|---|
| 160 | VerticalAxisValues=names) |
|---|
| 161 | return outNm |
|---|
| 162 | |
|---|
| 163 | ############################################################################## |
|---|
| 164 | |
|---|
| 165 | def confitPlotSeq(inputWS, Plot): |
|---|
| 166 | nhist = mtd[inputWS].getNumberHistograms() |
|---|
| 167 | if ( Plot == 'All' ): |
|---|
| 168 | mp.plotSpectrum(inputWS, range(0, nhist), True) |
|---|
| 169 | return |
|---|
| 170 | plotSpecs = [] |
|---|
| 171 | if ( Plot == 'Intensity' ): |
|---|
| 172 | res = 'Amplitude$' |
|---|
| 173 | elif ( Plot == 'HWHM' ): |
|---|
| 174 | res = 'HWHM$' |
|---|
| 175 | for i in range(0,nhist): |
|---|
| 176 | title = mtd[inputWS].getAxis(1).label(i) |
|---|
| 177 | if re.search(res, title): |
|---|
| 178 | plotSpecs.append(i) |
|---|
| 179 | mp.plotSpectrum(inputWS, plotSpecs, True) |
|---|
| 180 | |
|---|
| 181 | ############################################################################## |
|---|
| 182 | |
|---|
| 183 | def confitSeq(inputWS, func, startX, endX, Save, Plot, ftype, bgd, specMin, specMax, Verbose): |
|---|
| 184 | StartTime('ConvFit') |
|---|
| 185 | workdir = config['defaultsave.directory'] |
|---|
| 186 | elements = func.split('"') |
|---|
| 187 | resFile = elements[1] |
|---|
| 188 | if Verbose: |
|---|
| 189 | logger.notice('Input files : '+str(inputWS)) |
|---|
| 190 | input = inputWS+',i' + str(specMin) |
|---|
| 191 | if (specMax == -1): |
|---|
| 192 | specMax = mtd[inputWS].getNumberHistograms() - 1 |
|---|
| 193 | for i in range(specMin + 1, specMax + 1): |
|---|
| 194 | input += ';'+inputWS+',i'+str(i) |
|---|
| 195 | (instr, run) = getInstrRun(inputWS) |
|---|
| 196 | run_name = instr + run |
|---|
| 197 | outNm = getWSprefix(inputWS) + 'conv_' + ftype + bgd + str(specMin) + "_to_" + str(specMax) |
|---|
| 198 | if Verbose: |
|---|
| 199 | logger.notice(func) |
|---|
| 200 | PlotPeakByLogValue(Input=input, OutputWorkspace=outNm, Function=func, |
|---|
| 201 | StartX=startX, EndX=endX, FitType='Sequential') |
|---|
| 202 | wsname = confitParsToWS(outNm, inputWS, specMin, specMax) |
|---|
| 203 | RenameWorkspace(InputWorkspace=outNm, OutputWorkspace=outNm + "_Parameters") |
|---|
| 204 | getConvFitResult(inputWS, resFile, outNm, ftype, bgd, Verbose) |
|---|
| 205 | if Save: |
|---|
| 206 | o_path = os.path.join(workdir, wsname+'.nxs') # path name for nxs file |
|---|
| 207 | if Verbose: |
|---|
| 208 | logger.notice('Creating file : '+o_path) |
|---|
| 209 | SaveNexusProcessed(InputWorkspace=wsname, Filename=o_path) |
|---|
| 210 | if Plot != 'None': |
|---|
| 211 | confitPlotSeq(wsname, Plot) |
|---|
| 212 | EndTime('ConvFit') |
|---|
| 213 | |
|---|
| 214 | ############################################################################## |
|---|
| 215 | # Elwin |
|---|
| 216 | ############################################################################## |
|---|
| 217 | |
|---|
| 218 | def GetTemperature(root,tempWS,log_type,Verbose): |
|---|
| 219 | (instr, run) = getInstrRun(root) |
|---|
| 220 | run_name = instr+run |
|---|
| 221 | log_name = run_name+'_'+log_type |
|---|
| 222 | run = mtd[tempWS].getRun() |
|---|
| 223 | unit1 = 'Temperature' # default values |
|---|
| 224 | unit2 = 'K' |
|---|
| 225 | if log_type in run: # test logs in WS |
|---|
| 226 | tmp = run[log_type].value |
|---|
| 227 | temp = tmp[len(tmp)-1] |
|---|
| 228 | xval = temp |
|---|
| 229 | mess = ' Run : '+run_name +' ; Temperature in log = '+str(temp) |
|---|
| 230 | else: # logs not in WS |
|---|
| 231 | logger.notice('Log parameter not found') |
|---|
| 232 | log_file = log_name+'.txt' |
|---|
| 233 | log_path = FileFinder.getFullPath(log_file) |
|---|
| 234 | if (log_path == ''): # log file does not exists |
|---|
| 235 | mess = ' Run : '+run_name +' ; Temperature file not found' |
|---|
| 236 | xval = int(run_name[-3:]) |
|---|
| 237 | unit1 = 'Run-number' |
|---|
| 238 | unit2 = 'last 3 digits' |
|---|
| 239 | else: # get from log file |
|---|
| 240 | LoadLog(Workspace=tempWS, Filename=log_path) |
|---|
| 241 | run_logs = mtd[tempWS].getRun() |
|---|
| 242 | tmp = run_logs[log_name].value |
|---|
| 243 | temp = tmp[len(tmp)-1] |
|---|
| 244 | xval = temp |
|---|
| 245 | mess = ' Run : '+run_name+' ; Temperature in file = '+str(temp) |
|---|
| 246 | if Verbose: |
|---|
| 247 | logger.notice(mess) |
|---|
| 248 | unit = [unit1,unit2] |
|---|
| 249 | return xval,unit |
|---|
| 250 | |
|---|
| 251 | def elwin(inputFiles, eRange, log_type='sample', Normalise = False, |
|---|
| 252 | Save=False, Verbose=False, Plot=False): |
|---|
| 253 | StartTime('ElWin') |
|---|
| 254 | workdir = config['defaultsave.directory'] |
|---|
| 255 | CheckXrange(eRange,'Energy') |
|---|
| 256 | tempWS = '__temp' |
|---|
| 257 | if Verbose: |
|---|
| 258 | range1 = str(eRange[0])+' to '+str(eRange[1]) |
|---|
| 259 | if ( len(eRange) == 4 ): |
|---|
| 260 | range2 = str(eRange[2])+' to '+str(eRange[3]) |
|---|
| 261 | logger.notice('Using 2 energy ranges from '+range1+' & '+range2) |
|---|
| 262 | elif ( len(eRange) == 2 ): |
|---|
| 263 | logger.notice('Using 1 energy range from '+range1) |
|---|
| 264 | nr = 0 |
|---|
| 265 | inputRuns = sorted(inputFiles) |
|---|
| 266 | for file in inputRuns: |
|---|
| 267 | (direct, file_name) = os.path.split(file) |
|---|
| 268 | (root, ext) = os.path.splitext(file_name) |
|---|
| 269 | LoadNexus(Filename=file, OutputWorkspace=tempWS) |
|---|
| 270 | nsam,ntc = CheckHistZero(tempWS) |
|---|
| 271 | (xval, unit) = GetTemperature(root,tempWS,log_type,Verbose) |
|---|
| 272 | if Verbose: |
|---|
| 273 | logger.notice('Reading file : '+file) |
|---|
| 274 | if ( len(eRange) == 4 ): |
|---|
| 275 | ElasticWindow(InputWorkspace=tempWS, Range1Start=eRange[0], Range1End=eRange[1], |
|---|
| 276 | Range2Start=eRange[2], Range2End=eRange[3], |
|---|
| 277 | OutputInQ='__eq1', OutputInQSquared='__eq2') |
|---|
| 278 | elif ( len(eRange) == 2 ): |
|---|
| 279 | ElasticWindow(InputWorkspace=tempWS, Range1Start=eRange[0], Range1End=eRange[1], |
|---|
| 280 | OutputInQ='__eq1', OutputInQSquared='__eq2') |
|---|
| 281 | (instr, last) = getInstrRun(root) |
|---|
| 282 | q1 = np.array(mtd['__eq1'].readX(0)) |
|---|
| 283 | i1 = np.array(mtd['__eq1'].readY(0)) |
|---|
| 284 | e1 = np.array(mtd['__eq1'].readE(0)) |
|---|
| 285 | Logarithm(InputWorkspace='__eq2', OutputWorkspace='__eq2') |
|---|
| 286 | q2 = np.array(mtd['__eq2'].readX(0)) |
|---|
| 287 | i2 = np.array(mtd['__eq2'].readY(0)) |
|---|
| 288 | e2 = np.array(mtd['__eq2'].readE(0)) |
|---|
| 289 | if (nr == 0): |
|---|
| 290 | CloneWorkspace(InputWorkspace='__eq1', OutputWorkspace='__elf') |
|---|
| 291 | first = getWSprefix(tempWS,root) |
|---|
| 292 | datX1 = q1 |
|---|
| 293 | datY1 = i1 |
|---|
| 294 | datE1 = e1 |
|---|
| 295 | datX2 = q2 |
|---|
| 296 | datY2 = i2 |
|---|
| 297 | datE2 = e2 |
|---|
| 298 | Tvalue = [xval] |
|---|
| 299 | Terror = [0.0] |
|---|
| 300 | Taxis = str(xval) |
|---|
| 301 | else: |
|---|
| 302 | CloneWorkspace(InputWorkspace='__eq1', OutputWorkspace='__elftmp') |
|---|
| 303 | ConjoinWorkspaces(InputWorkspace1='__elf', InputWorkspace2='__elftmp', CheckOverlapping=False) |
|---|
| 304 | datX1 = np.append(datX1,q1) |
|---|
| 305 | datY1 = np.append(datY1,i1) |
|---|
| 306 | datE1 = np.append(datE1,e1) |
|---|
| 307 | datX2 = np.append(datX2,q2) |
|---|
| 308 | datY2 = np.append(datY2,i2) |
|---|
| 309 | datE2 = np.append(datE2,e2) |
|---|
| 310 | Tvalue.append(xval) |
|---|
| 311 | Terror.append(0.0) |
|---|
| 312 | Taxis += ','+str(xval) |
|---|
| 313 | nr += 1 |
|---|
| 314 | Txa = np.array(Tvalue) |
|---|
| 315 | Tea = np.array(Terror) |
|---|
| 316 | nQ = len(q1) |
|---|
| 317 | for nq in range(0,nQ): |
|---|
| 318 | iq = [] |
|---|
| 319 | eq = [] |
|---|
| 320 | for nt in range(0,len(Tvalue)): |
|---|
| 321 | ii = mtd['__elf'].readY(nt) |
|---|
| 322 | iq.append(ii[nq]) |
|---|
| 323 | ie = mtd['__elf'].readE(nt) |
|---|
| 324 | eq.append(ie[nq]) |
|---|
| 325 | iqa = np.array(iq) |
|---|
| 326 | eqa = np.array(eq) |
|---|
| 327 | if (nq == 0): |
|---|
| 328 | datTx = Txa |
|---|
| 329 | datTy = iqa |
|---|
| 330 | datTe = eqa |
|---|
| 331 | else: |
|---|
| 332 | datTx = np.append(datTx,Txa) |
|---|
| 333 | datTy = np.append(datTy,iqa) |
|---|
| 334 | datTe = np.append(datTe,eqa) |
|---|
| 335 | DeleteWorkspace(tempWS) |
|---|
| 336 | DeleteWorkspace('__eq1') |
|---|
| 337 | DeleteWorkspace('__eq2') |
|---|
| 338 | if (nr == 1): |
|---|
| 339 | ename = first[:-1] |
|---|
| 340 | else: |
|---|
| 341 | ename = first+'to_'+last |
|---|
| 342 | elfWS = ename+'_elf' # interchange Q & T |
|---|
| 343 | CreateWorkspace(OutputWorkspace=elfWS, DataX=datTx, DataY=datTy, DataE=datTe, |
|---|
| 344 | Nspec=nQ, UnitX='Energy', VerticalAxisUnit='MomentumTransfer', VerticalAxisValues=q1) |
|---|
| 345 | unitx = mtd[elfWS].getAxis(0).setUnit("Label") |
|---|
| 346 | unitx.setLabel(unit[0], unit[1]) |
|---|
| 347 | DeleteWorkspace('__elf') |
|---|
| 348 | e1WS = ename+'_eq1' |
|---|
| 349 | CreateWorkspace(OutputWorkspace=e1WS, DataX=datX1, DataY=datY1, DataE=datE1, |
|---|
| 350 | Nspec=nr, UnitX='MomentumTransfer', VerticalAxisUnit='Energy', VerticalAxisValues=Taxis) |
|---|
| 351 | unity = mtd[e1WS].getAxis(1).setUnit("Label") |
|---|
| 352 | unity.setLabel(unit[0], unit[1]) |
|---|
| 353 | label = unit[0]+' / '+unit[1] |
|---|
| 354 | AddSampleLog(Workspace=e1WS, LogName="Vaxis", LogType="String", LogText=label) |
|---|
| 355 | e2WS = ename+'_eq2' |
|---|
| 356 | CreateWorkspace(OutputWorkspace=e2WS, DataX=datX2, DataY=datY2, DataE=datE2, |
|---|
| 357 | Nspec=nr, UnitX='QSquared', VerticalAxisUnit='Energy', VerticalAxisValues=Taxis) |
|---|
| 358 | unity = mtd[e2WS].getAxis(1).setUnit("Label") |
|---|
| 359 | unity.setLabel(unit[0], unit[1]) |
|---|
| 360 | AddSampleLog(Workspace=e2WS, LogName="Vaxis", LogType="String", LogText=label) |
|---|
| 361 | if unit[0] == 'Temperature': |
|---|
| 362 | nT = len(Tvalue) |
|---|
| 363 | if Tvalue[0] < Tvalue[nT-1]: |
|---|
| 364 | lo = 0 |
|---|
| 365 | hi = nT-1 |
|---|
| 366 | else: |
|---|
| 367 | lo = nT-1 |
|---|
| 368 | hi = 0 |
|---|
| 369 | text = 'Temperature range : '+str(Tvalue[lo])+' to '+str(Tvalue[hi]) |
|---|
| 370 | if Normalise: |
|---|
| 371 | yval = mtd[e1WS].readY(lo) |
|---|
| 372 | normFactor = 1.0/yval[0] |
|---|
| 373 | Scale(InputWorkspace=e1WS, OutputWorkspace=e1WS, Factor=normFactor, Operation='Multiply') |
|---|
| 374 | if Verbose: |
|---|
| 375 | logger.notice(text) |
|---|
| 376 | logger.notice('Normalised eq1 by scale factor : '+str(normFactor)) |
|---|
| 377 | |
|---|
| 378 | if Save: |
|---|
| 379 | e1_path = os.path.join(workdir, e1WS+'.nxs') # path name for nxs file |
|---|
| 380 | e2_path = os.path.join(workdir, e2WS+'.nxs') # path name for nxs file |
|---|
| 381 | elf_path = os.path.join(workdir, elfWS+'.nxs') # path name for nxs file |
|---|
| 382 | if Verbose: |
|---|
| 383 | logger.notice('Creating file : '+e1_path) |
|---|
| 384 | logger.notice('Creating file : '+e2_path) |
|---|
| 385 | logger.notice('Creating file : '+elf_path) |
|---|
| 386 | SaveNexusProcessed(InputWorkspace=e1WS, Filename=e1_path) |
|---|
| 387 | SaveNexusProcessed(InputWorkspace=e2WS, Filename=e2_path) |
|---|
| 388 | SaveNexusProcessed(InputWorkspace=elfWS, Filename=elf_path) |
|---|
| 389 | if Plot: |
|---|
| 390 | elwinPlot(e1WS,e2WS,elfWS) |
|---|
| 391 | EndTime('Elwin') |
|---|
| 392 | return e1WS,e2WS |
|---|
| 393 | |
|---|
| 394 | def elwinPlot(eq1,eq2,elf): |
|---|
| 395 | nhist = mtd[eq1].getNumberHistograms() # no. of hist/groups in sam |
|---|
| 396 | nBins = mtd[eq1].blocksize() |
|---|
| 397 | lastXeq1 = mtd[eq1].readX(0)[nBins-1] |
|---|
| 398 | graph1 = mp.plotSpectrum(eq1, range(0,nhist)) |
|---|
| 399 | layer1 = graph1.activeLayer() |
|---|
| 400 | layer1.setScale(mp.Layer.Bottom, 0.0, lastXeq1) |
|---|
| 401 | layer1.setAxisTitle(mp.Layer.Left,'Elastic Intensity') |
|---|
| 402 | nBins = mtd[eq2].blocksize() |
|---|
| 403 | lastXeq2 = mtd[eq2].readX(0)[nBins-1] |
|---|
| 404 | graph2 = mp.plotSpectrum(eq2, range(0,nhist)) |
|---|
| 405 | layer2 = graph2.activeLayer() |
|---|
| 406 | layer2.setScale(mp.Layer.Bottom, 0.0, lastXeq2) |
|---|
| 407 | layer2.setAxisTitle(mp.Layer.Left,'log(Elastic Intensity)') |
|---|
| 408 | ntemp = mtd[elf].getNumberHistograms() # no. of hist/groups in sam |
|---|
| 409 | graph3 = mp.plotSpectrum(elf, range(0,ntemp)) |
|---|
| 410 | layer3 = graph3.activeLayer() |
|---|
| 411 | layer3.setAxisTitle(mp.Layer.Bottom, 'Temperature(K)') |
|---|
| 412 | |
|---|
| 413 | ############################################################################## |
|---|
| 414 | # Fury |
|---|
| 415 | ############################################################################## |
|---|
| 416 | |
|---|
| 417 | def furyPlot(inWS, spec): |
|---|
| 418 | graph = mp.plotSpectrum(inWS, spec) |
|---|
| 419 | layer = graph.activeLayer() |
|---|
| 420 | layer.setScale(mp.Layer.Left, 0, 1.0) |
|---|
| 421 | |
|---|
| 422 | def fury(sam_files, res_file, rebinParam, RES=True, Save=False, Verbose=False, |
|---|
| 423 | Plot=False): |
|---|
| 424 | StartTime('Fury') |
|---|
| 425 | workdir = config['defaultsave.directory'] |
|---|
| 426 | LoadNexus(Filename=sam_files[0], OutputWorkspace='__sam_tmp') # SAMPLE |
|---|
| 427 | nsam,npt = CheckHistZero('__sam_tmp') |
|---|
| 428 | Xin = mtd['__sam_tmp'].readX(0) |
|---|
| 429 | d1 = Xin[1]-Xin[0] |
|---|
| 430 | if d1 < 1e-8: |
|---|
| 431 | error = 'Data energy bin is zero' |
|---|
| 432 | logger.notice('ERROR *** ' + error) |
|---|
| 433 | sys.exit(error) |
|---|
| 434 | d2 = Xin[npt-1]-Xin[npt-2] |
|---|
| 435 | dmin = min(d1,d2) |
|---|
| 436 | pars = rebinParam.split(',') |
|---|
| 437 | if (float(pars[1]) <= dmin): |
|---|
| 438 | error = 'EWidth = ' + pars[1] + ' < smallest Eincr = ' + str(dmin) |
|---|
| 439 | logger.notice('ERROR *** ' + error) |
|---|
| 440 | sys.exit(error) |
|---|
| 441 | outWSlist = [] |
|---|
| 442 | # Process RES Data Only Once |
|---|
| 443 | if Verbose: |
|---|
| 444 | logger.notice('Reading RES file : '+res_file) |
|---|
| 445 | LoadNexus(Filename=res_file, OutputWorkspace='res_data') # RES |
|---|
| 446 | CheckAnalysers('__sam_tmp','res_data',Verbose) |
|---|
| 447 | nres,nptr = CheckHistZero('res_data') |
|---|
| 448 | if nres > 1: |
|---|
| 449 | CheckHistSame('__sam_tmp','Sample','res_data','Resolution') |
|---|
| 450 | DeleteWorkspace('__sam_tmp') |
|---|
| 451 | Rebin(InputWorkspace='res_data', OutputWorkspace='res_data', Params=rebinParam) |
|---|
| 452 | Integration(InputWorkspace='res_data', OutputWorkspace='res_int') |
|---|
| 453 | ConvertToPointData(InputWorkspace='res_data', OutputWorkspace='res_data') |
|---|
| 454 | ExtractFFTSpectrum(InputWorkspace='res_data', OutputWorkspace='res_fft', FFTPart=2) |
|---|
| 455 | Divide(LHSWorkspace='res_fft', RHSWorkspace='res_int', OutputWorkspace='res') |
|---|
| 456 | for sam_file in sam_files: |
|---|
| 457 | (direct, filename) = os.path.split(sam_file) |
|---|
| 458 | (root, ext) = os.path.splitext(filename) |
|---|
| 459 | if (ext == '.nxs'): |
|---|
| 460 | if Verbose: |
|---|
| 461 | logger.notice('Reading sample file : '+sam_file) |
|---|
| 462 | LoadNexus(Filename=sam_file, OutputWorkspace='sam_data') # SAMPLE |
|---|
| 463 | Rebin(InputWorkspace='sam_data', OutputWorkspace='sam_data', Params=rebinParam) |
|---|
| 464 | else: #input is workspace |
|---|
| 465 | Rebin(InputWorkspace=sam_file, OutputWorkspace='sam_data', Params=rebinParam) |
|---|
| 466 | Integration(InputWorkspace='sam_data', OutputWorkspace='sam_int') |
|---|
| 467 | ConvertToPointData(InputWorkspace='sam_data', OutputWorkspace='sam_data') |
|---|
| 468 | ExtractFFTSpectrum(InputWorkspace='sam_data', OutputWorkspace='sam_fft', FFTPart=2) |
|---|
| 469 | Divide(LHSWorkspace='sam_fft', RHSWorkspace='sam_int', OutputWorkspace='sam') |
|---|
| 470 | # Create save file name |
|---|
| 471 | savefile = getWSprefix('sam_data', root) + 'iqt' |
|---|
| 472 | outWSlist.append(savefile) |
|---|
| 473 | Divide(LHSWorkspace='sam', RHSWorkspace='res', OutputWorkspace=savefile) |
|---|
| 474 | #Cleanup Sample Files |
|---|
| 475 | DeleteWorkspace('sam_data') |
|---|
| 476 | DeleteWorkspace('sam_int') |
|---|
| 477 | DeleteWorkspace('sam_fft') |
|---|
| 478 | DeleteWorkspace('sam') |
|---|
| 479 | # Crop nonsense values off workspace |
|---|
| 480 | bin = int(math.ceil(mtd[savefile].blocksize()/2.0)) |
|---|
| 481 | binV = mtd[savefile].dataX(0)[bin] |
|---|
| 482 | CropWorkspace(InputWorkspace=savefile, OutputWorkspace=savefile, XMax=binV) |
|---|
| 483 | if Save: |
|---|
| 484 | opath = os.path.join(workdir, savefile+'.nxs') # path name for nxs file |
|---|
| 485 | SaveNexusProcessed(InputWorkspace=savefile, Filename=opath) |
|---|
| 486 | if Verbose: |
|---|
| 487 | logger.notice('Output file : '+opath) |
|---|
| 488 | # Clean Up RES files |
|---|
| 489 | DeleteWorkspace('res_data') |
|---|
| 490 | DeleteWorkspace('res_int') |
|---|
| 491 | DeleteWorkspace('res_fft') |
|---|
| 492 | DeleteWorkspace('res') |
|---|
| 493 | if Plot: |
|---|
| 494 | specrange = range(0,mtd[outWSlist[0]].getNumberHistograms()) |
|---|
| 495 | furyPlot(outWSlist, specrange) |
|---|
| 496 | EndTime('Fury') |
|---|
| 497 | return outWSlist |
|---|
| 498 | |
|---|
| 499 | ############################################################################## |
|---|
| 500 | # FuryFit |
|---|
| 501 | ############################################################################## |
|---|
| 502 | |
|---|
| 503 | def getFuryFitOption(option): |
|---|
| 504 | nopt = len(option) |
|---|
| 505 | if nopt == 2: |
|---|
| 506 | npeak = option[0] |
|---|
| 507 | type = option[1] |
|---|
| 508 | elif nopt == 4: |
|---|
| 509 | npeak = '2' |
|---|
| 510 | type = 'SE' |
|---|
| 511 | else: |
|---|
| 512 | error = 'Bad option : ' +option |
|---|
| 513 | logger.notice('ERROR *** ' + error) |
|---|
| 514 | sys.exit(error) |
|---|
| 515 | return npeak, type |
|---|
| 516 | |
|---|
| 517 | def furyfitParsToWS(Table, Data, option): |
|---|
| 518 | npeak, type = getFuryFitOption(option) |
|---|
| 519 | Q = createQaxis(Data) |
|---|
| 520 | nQ = len(Q) |
|---|
| 521 | ws = mtd[Table] |
|---|
| 522 | rCount = ws.rowCount() |
|---|
| 523 | cCount = ws.columnCount() |
|---|
| 524 | cName = ws.getColumnNames() |
|---|
| 525 | Qa = np.array(Q) |
|---|
| 526 | A0v = ws.column(1) #bgd value |
|---|
| 527 | A0e = ws.column(2) #bgd error |
|---|
| 528 | Iy1 = ws.column(5) #intensity1 value |
|---|
| 529 | Ie1 = ws.column(2) #intensity1 error = bgd |
|---|
| 530 | dataX = Qa |
|---|
| 531 | dataY = np.array(A0v) |
|---|
| 532 | dataE = np.array(A0e) |
|---|
| 533 | names = cName[1] |
|---|
| 534 | dataX = np.append(dataX,Qa) |
|---|
| 535 | dataY = np.append(dataY,np.array(Iy1)) |
|---|
| 536 | dataE = np.append(dataE,np.array(Ie1)) |
|---|
| 537 | names += ","+cName[5] |
|---|
| 538 | Ty1 = ws.column(7) #tau1 value |
|---|
| 539 | Te1 = ws.column(8) #tau1 error |
|---|
| 540 | dataX = np.append(dataX,Qa) |
|---|
| 541 | dataY = np.append(dataY,np.array(Ty1)) |
|---|
| 542 | dataE = np.append(dataE,np.array(Te1)) |
|---|
| 543 | names += ","+cName[7] |
|---|
| 544 | nSpec = 3 |
|---|
| 545 | if npeak == '1' and type == 'S': |
|---|
| 546 | By1 = ws.column(9) #beta1 value |
|---|
| 547 | Be1 = ws.column(10) #beta2 error |
|---|
| 548 | dataX = np.append(dataX,Qa) |
|---|
| 549 | dataY = np.append(dataY,np.array(By1)) |
|---|
| 550 | dataE = np.append(dataE,np.array(Be1)) |
|---|
| 551 | names += ","+cName[9] |
|---|
| 552 | nSpec += 1 |
|---|
| 553 | if npeak == '2': |
|---|
| 554 | Iy2 = ws.column(9) #intensity2 value |
|---|
| 555 | Ie2 = ws.column(10) #intensity2 error |
|---|
| 556 | dataX = np.append(dataX,Qa) |
|---|
| 557 | dataY = np.append(dataY,np.array(Iy2)) |
|---|
| 558 | dataE = np.append(dataE,np.array(Ie2)) |
|---|
| 559 | names += ","+cName[9] |
|---|
| 560 | nSpec += 1 |
|---|
| 561 | Ty2 = ws.column(11) #tau2 value |
|---|
| 562 | Te2 = ws.column(12) #tau2 error |
|---|
| 563 | dataX = np.append(dataX,Qa) |
|---|
| 564 | dataY = np.append(dataY,np.array(Ty2)) |
|---|
| 565 | dataE = np.append(dataE,np.array(Te2)) |
|---|
| 566 | names += ","+cName[11] |
|---|
| 567 | nSpec += 1 |
|---|
| 568 | wsname = Table + "_Workspace" |
|---|
| 569 | CreateWorkspace(OutputWorkspace=wsname, DataX=dataX, DataY=dataY, DataE=dataE, |
|---|
| 570 | Nspec=nSpec, UnitX='MomentumTransfer', VerticalAxisUnit='Text', |
|---|
| 571 | VerticalAxisValues=names) |
|---|
| 572 | return wsname |
|---|
| 573 | |
|---|
| 574 | def createFurySeqResFun(ties, par, option): |
|---|
| 575 | npeak, type = getFuryFitOption(option) |
|---|
| 576 | fun = 'name=LinearBackground,A0='+str(par[0])+',A1=0,ties=(A1=0);' |
|---|
| 577 | if npeak == '1' and type == 'E': |
|---|
| 578 | fun += 'name=UserFunction,Formula=Intensity*exp(-(x/Tau)),Intensity='+str(par[1])+',Tau='+str(par[2]) |
|---|
| 579 | if npeak == '1' and type == 'S': |
|---|
| 580 | fun += 'name=UserFunction,Formula=Intensity*exp(-(x/Tau)^Beta),Intensity='+str(par[1])+',Tau='+str(par[2])+',Beta='+str(par[3]) |
|---|
| 581 | if ties: |
|---|
| 582 | fun += ';ties=(f1.Intensity=1-f0.A0)' |
|---|
| 583 | return fun |
|---|
| 584 | |
|---|
| 585 | def getFurySeqResult(inputWS, outNm, option, Verbose): |
|---|
| 586 | logger.notice('Option : ' +option) |
|---|
| 587 | npeak, type = getFuryFitOption(option) |
|---|
| 588 | params = mtd[outNm+'_Parameters'] |
|---|
| 589 | A0 = params.column(1) #bgd value |
|---|
| 590 | I1 = params.column(5) #intensity1 value |
|---|
| 591 | T1 = params.column(7) #tau1 value |
|---|
| 592 | if npeak == '1' and type == 'S': |
|---|
| 593 | B1 = params.column(9) #beta1 value |
|---|
| 594 | if npeak == '2': |
|---|
| 595 | I2 = params.column(9) #intensity2 value |
|---|
| 596 | T2 = params.column(11) #tau2 value |
|---|
| 597 | nHist = mtd[inputWS].getNumberHistograms() |
|---|
| 598 | for i in range(nHist): |
|---|
| 599 | paras = [A0[i], I1[i], T1[i]] |
|---|
| 600 | if npeak == '1' and type == 'S': |
|---|
| 601 | paras.append(B1[i]) |
|---|
| 602 | if npeak == '2': |
|---|
| 603 | paras.append(I2[i]) |
|---|
| 604 | paras.append(T2[i]) |
|---|
| 605 | func = createFurySeqResFun(True, paras, option) |
|---|
| 606 | if Verbose: |
|---|
| 607 | logger.notice('Fit func : '+func) |
|---|
| 608 | fitWS = outNm + '_Result_' |
|---|
| 609 | fout = fitWS + str(i) |
|---|
| 610 | Fit(Function=func,InputWorkspace=inputWS,WorkspaceIndex=i,Output=fout,MaxIterations=0) |
|---|
| 611 | unitx = mtd[fout+'_Workspace'].getAxis(0).setUnit("Label") |
|---|
| 612 | unitx.setLabel('Time' , 'ns') |
|---|
| 613 | RenameWorkspace(InputWorkspace=fout+'_Workspace', OutputWorkspace=fout) |
|---|
| 614 | DeleteWorkspace(fitWS+str(i)+'_NormalisedCovarianceMatrix') |
|---|
| 615 | DeleteWorkspace(fitWS+str(i)+'_Parameters') |
|---|
| 616 | if i == 0: |
|---|
| 617 | group = fout |
|---|
| 618 | else: |
|---|
| 619 | group += ',' + fout |
|---|
| 620 | GroupWorkspaces(InputWorkspaces=group,OutputWorkspace=fitWS[:-1]) |
|---|
| 621 | |
|---|
| 622 | def furyfitPlotSeq(inputWS, Plot): |
|---|
| 623 | nHist = mtd[inputWS].getNumberHistograms() |
|---|
| 624 | if ( Plot == 'All' ): |
|---|
| 625 | mp.plotSpectrum(inputWS, range(0, nHist), True) |
|---|
| 626 | return |
|---|
| 627 | plotSpecs = [] |
|---|
| 628 | if ( Plot == 'Intensity' ): |
|---|
| 629 | res = 'Intensity$' |
|---|
| 630 | if ( Plot == 'Tau' ): |
|---|
| 631 | res = 'Tau$' |
|---|
| 632 | elif ( Plot == 'Beta' ): |
|---|
| 633 | res = 'Beta$' |
|---|
| 634 | for i in range(0, nHist): |
|---|
| 635 | title = mtd[inputWS].getAxis(1).label(i) |
|---|
| 636 | if ( re.search(res, title) ): |
|---|
| 637 | plotSpecs.append(i) |
|---|
| 638 | mp.plotSpectrum(inputWS, plotSpecs, True) |
|---|
| 639 | |
|---|
| 640 | def furyfitSeq(inputWS, func, ftype, startx, endx, Save, Plot, Verbose=False): |
|---|
| 641 | StartTime('FuryFit') |
|---|
| 642 | workdir = config['defaultsave.directory'] |
|---|
| 643 | input = inputWS+',i0' |
|---|
| 644 | nHist = mtd[inputWS].getNumberHistograms() |
|---|
| 645 | for i in range(1,nHist): |
|---|
| 646 | input += ';'+inputWS+',i'+str(i) |
|---|
| 647 | outNm = getWSprefix(inputWS) + 'fury_' + ftype + "0_to_" + str(nHist-1) |
|---|
| 648 | option = ftype[:-2] |
|---|
| 649 | if Verbose: |
|---|
| 650 | logger.notice('Option: '+option) |
|---|
| 651 | logger.notice(func) |
|---|
| 652 | PlotPeakByLogValue(Input=input, OutputWorkspace=outNm, Function=func, |
|---|
| 653 | StartX=startx, EndX=endx, FitType='Sequential') |
|---|
| 654 | fitWS = furyfitParsToWS(outNm, inputWS, option) |
|---|
| 655 | RenameWorkspace(InputWorkspace=outNm, OutputWorkspace=outNm+"_Parameters") |
|---|
| 656 | CropWorkspace(InputWorkspace=inputWS, OutputWorkspace=inputWS, XMin=startx, XMax=endx) |
|---|
| 657 | getFurySeqResult(inputWS, outNm, option, Verbose) |
|---|
| 658 | if Save: |
|---|
| 659 | opath = os.path.join(workdir, fitWS+'.nxs') # path name for nxs file |
|---|
| 660 | SaveNexusProcessed(InputWorkspace=fitWS, Filename=opath) |
|---|
| 661 | if Verbose: |
|---|
| 662 | logger.notice('Output file : '+opath) |
|---|
| 663 | if ( Plot != 'None' ): |
|---|
| 664 | furyfitPlotSeq(fitWS, Plot) |
|---|
| 665 | EndTime('FuryFit') |
|---|
| 666 | return mtd[fitWS] |
|---|
| 667 | |
|---|
| 668 | def furyfitMultParsToWS(Table, Data): |
|---|
| 669 | # Q = createQaxis(Data) |
|---|
| 670 | theta,Q = GetThetaQ(Data) |
|---|
| 671 | ws = mtd[Table+'_Parameters'] |
|---|
| 672 | rCount = ws.rowCount() |
|---|
| 673 | cCount = ws.columnCount() |
|---|
| 674 | nSpec = ( rCount - 1 ) / 5 |
|---|
| 675 | val = ws.column(1) #value |
|---|
| 676 | err = ws.column(2) #error |
|---|
| 677 | dataX = [] |
|---|
| 678 | A0val = [] |
|---|
| 679 | A0err = [] |
|---|
| 680 | Ival = [] |
|---|
| 681 | Ierr = [] |
|---|
| 682 | Tval = [] |
|---|
| 683 | Terr = [] |
|---|
| 684 | Bval = [] |
|---|
| 685 | Berr = [] |
|---|
| 686 | for spec in range(0,nSpec): |
|---|
| 687 | n1 = spec*5 |
|---|
| 688 | A0 = n1 |
|---|
| 689 | A1 = n1+1 |
|---|
| 690 | int = n1+2 #intensity value |
|---|
| 691 | tau = n1+3 #tau value |
|---|
| 692 | beta = n1+4 #beta value |
|---|
| 693 | dataX.append(Q[spec]) |
|---|
| 694 | A0val.append(val[A0]) |
|---|
| 695 | A0err.append(err[A0]) |
|---|
| 696 | Ival.append(val[int]) |
|---|
| 697 | Ierr.append(err[int]) |
|---|
| 698 | Tval.append(val[tau]) |
|---|
| 699 | Terr.append(err[tau]) |
|---|
| 700 | Bval.append(val[beta]) |
|---|
| 701 | Berr.append(err[beta]) |
|---|
| 702 | nQ = len(dataX) |
|---|
| 703 | Qa = np.array(dataX) |
|---|
| 704 | dataY = np.array(A0val) |
|---|
| 705 | dataE = np.array(A0err) |
|---|
| 706 | dataY = np.append(dataY,np.array(Ival)) |
|---|
| 707 | dataE = np.append(dataE,np.array(Ierr)) |
|---|
| 708 | dataY = np.append(dataY,np.array(Tval)) |
|---|
| 709 | dataE = np.append(dataE,np.array(Terr)) |
|---|
| 710 | dataY = np.append(dataY,np.array(Bval)) |
|---|
| 711 | dataE = np.append(dataE,np.array(Berr)) |
|---|
| 712 | names = 'A0,Intensity,Tau,Beta' |
|---|
| 713 | suffix = 'Workspace' |
|---|
| 714 | wsname = Table + '_' + suffix |
|---|
| 715 | CreateWorkspace(OutputWorkspace=wsname, DataX=Qa, DataY=dataY, DataE=dataE, |
|---|
| 716 | Nspec=4, UnitX='MomentumTransfer', VerticalAxisUnit='Text', |
|---|
| 717 | VerticalAxisValues=names) |
|---|
| 718 | return wsname |
|---|
| 719 | |
|---|
| 720 | def furyfitPlotMult(inputWS, Plot): |
|---|
| 721 | nHist = mtd[inputWS].getNumberHistograms() |
|---|
| 722 | if ( Plot == 'All' ): |
|---|
| 723 | mp.plotSpectrum(inputWS, range(0, nHist)) |
|---|
| 724 | return |
|---|
| 725 | plotSpecs = [] |
|---|
| 726 | if ( Plot == 'Intensity' ): |
|---|
| 727 | mp.plotSpectrum(inputWS, 1, True) |
|---|
| 728 | if ( Plot == 'Tau' ): |
|---|
| 729 | mp.plotSpectrum(inputWS, 2, True) |
|---|
| 730 | elif ( Plot == 'Beta' ): |
|---|
| 731 | mp.plotSpectrum(inputWS, 3, True) |
|---|
| 732 | |
|---|
| 733 | |
|---|
| 734 | def createFuryMultFun(ties = True, function = ''): |
|---|
| 735 | fun = '(composite=CompositeFunction,$domains=i;' |
|---|
| 736 | fun += function |
|---|
| 737 | if ties: |
|---|
| 738 | fun += ';ties=(f1.Intensity=1-f0.A0)' |
|---|
| 739 | fun += ');' |
|---|
| 740 | return fun |
|---|
| 741 | |
|---|
| 742 | def createFuryMultResFun(ties = True, A0 = 0.02, Intensity = 0.98 ,Tau = 0.025, Beta = 0.8): |
|---|
| 743 | fun = '(composite=CompositeFunction,$domains=i;' |
|---|
| 744 | fun += 'name=LinearBackground,A0='+str(A0)+',A1=0,ties=(A1=0);' |
|---|
| 745 | fun += 'name=UserFunction,Formula=Intensity*exp(-(x/Tau)^Beta),Intensity='+str(Intensity)+',Tau='+str(Tau)+',Beta='+str(Beta) |
|---|
| 746 | if ties: |
|---|
| 747 | fun += ';ties=(f1.Intensity=1-f0.A0)' |
|---|
| 748 | fun += ');' |
|---|
| 749 | return fun |
|---|
| 750 | |
|---|
| 751 | def getFuryMultResult(inputWS, outNm, function, Verbose): |
|---|
| 752 | params = mtd[outNm+'_Parameters'] |
|---|
| 753 | nHist = mtd[inputWS].getNumberHistograms() |
|---|
| 754 | for i in range(nHist): |
|---|
| 755 | j = 5 * i |
|---|
| 756 | # assert( params.row(j)['Name'][3:] == 'f0.A0' ) |
|---|
| 757 | A0 = params.row(j)['Value'] |
|---|
| 758 | A1 = params.row(j + 1)['Value'] |
|---|
| 759 | Intensity = params.row(j + 2)['Value'] |
|---|
| 760 | Tau = params.row(j + 3)['Value'] |
|---|
| 761 | Beta = params.row(j + 4)['Value'] |
|---|
| 762 | func = createFuryMultResFun(True, A0, Intensity ,Tau, Beta) |
|---|
| 763 | if Verbose: |
|---|
| 764 | logger.notice('Fit func : '+func) |
|---|
| 765 | fitWS = outNm + '_Result_' |
|---|
| 766 | fout = fitWS + str(i) |
|---|
| 767 | Fit(Function=func,InputWorkspace=inputWS,WorkspaceIndex=i,Output=fout,MaxIterations=0) |
|---|
| 768 | unitx = mtd[fout+'_Workspace'].getAxis(0).setUnit("Label") |
|---|
| 769 | unitx.setLabel('Time' , 'ns') |
|---|
| 770 | RenameWorkspace(InputWorkspace=fout+'_Workspace', OutputWorkspace=fout) |
|---|
| 771 | DeleteWorkspace(fitWS+str(i)+'_NormalisedCovarianceMatrix') |
|---|
| 772 | DeleteWorkspace(fitWS+str(i)+'_Parameters') |
|---|
| 773 | if i == 0: |
|---|
| 774 | group = fout |
|---|
| 775 | else: |
|---|
| 776 | group += ',' + fout |
|---|
| 777 | GroupWorkspaces(InputWorkspaces=group,OutputWorkspace=fitWS[:-1]) |
|---|
| 778 | |
|---|
| 779 | def furyfitMult(inputWS, function, ftype, startx, endx, Save, Plot, Verbose=False): |
|---|
| 780 | StartTime('FuryFit Mult') |
|---|
| 781 | workdir = config['defaultsave.directory'] |
|---|
| 782 | option = ftype[:-2] |
|---|
| 783 | if Verbose: |
|---|
| 784 | logger.notice('Option: '+option) |
|---|
| 785 | logger.notice('Function: '+function) |
|---|
| 786 | nHist = mtd[inputWS].getNumberHistograms() |
|---|
| 787 | outNm = inputWS[:-3] + 'fury_mult' |
|---|
| 788 | f1 = createFuryMultFun(True, function) |
|---|
| 789 | func= 'composite=MultiDomainFunction,NumDeriv=1;' |
|---|
| 790 | ties='ties=(' |
|---|
| 791 | kwargs = {} |
|---|
| 792 | for i in range(0,nHist): |
|---|
| 793 | func+=f1 |
|---|
| 794 | if i > 0: |
|---|
| 795 | ties += 'f' + str(i) + '.f1.Beta=f0.f1.Beta' |
|---|
| 796 | if i < nHist-1: |
|---|
| 797 | ties += ',' |
|---|
| 798 | kwargs['InputWorkspace_' + str(i)] = inputWS |
|---|
| 799 | kwargs['WorkspaceIndex_' + str(i)] = i |
|---|
| 800 | ties+=')' |
|---|
| 801 | func += ties |
|---|
| 802 | CropWorkspace(InputWorkspace=inputWS, OutputWorkspace=inputWS, XMin=startx, XMax=endx) |
|---|
| 803 | Fit(Function=func,InputWorkspace=inputWS,WorkspaceIndex=0,Output=outNm,**kwargs) |
|---|
| 804 | outWS = furyfitMultParsToWS(outNm, inputWS) |
|---|
| 805 | getFuryMultResult(inputWS, outNm, function, Verbose) |
|---|
| 806 | if Save: |
|---|
| 807 | opath = os.path.join(workdir, outWS+'.nxs') # path name for nxs file |
|---|
| 808 | SaveNexusProcessed(InputWorkspace=outWS, Filename=opath) |
|---|
| 809 | rpath = os.path.join(workdir, outNm+'_result.nxs') # path name for nxs file |
|---|
| 810 | SaveNexusProcessed(InputWorkspace=outNm+'_result', Filename=rpath) |
|---|
| 811 | if Verbose: |
|---|
| 812 | logger.notice('Output file : '+opath) |
|---|
| 813 | logger.notice('Output file : '+rpath) |
|---|
| 814 | if ( Plot != 'None' ): |
|---|
| 815 | furyfitPlotMult(outWS, Plot) |
|---|
| 816 | EndTime('FuryFit') |
|---|
| 817 | |
|---|
| 818 | ############################################################################## |
|---|
| 819 | # MSDFit |
|---|
| 820 | ############################################################################## |
|---|
| 821 | |
|---|
| 822 | def msdfitParsToWS(Table, xData): |
|---|
| 823 | dataX = xData |
|---|
| 824 | ws = mtd[Table+'_Table'] |
|---|
| 825 | rCount = ws.rowCount() |
|---|
| 826 | yA0 = ws.column(1) |
|---|
| 827 | eA0 = ws.column(2) |
|---|
| 828 | yA1 = ws.column(3) |
|---|
| 829 | dataY1 = map(lambda x : -x, yA1) |
|---|
| 830 | eA1 = ws.column(4) |
|---|
| 831 | wsname = Table |
|---|
| 832 | CreateWorkspace(OutputWorkspace=wsname+'_a0', DataX=dataX, DataY=yA0, DataE=eA0, |
|---|
| 833 | Nspec=1, UnitX='') |
|---|
| 834 | CreateWorkspace(OutputWorkspace=wsname+'_a1', DataX=dataX, DataY=dataY1, DataE=eA1, |
|---|
| 835 | Nspec=1, UnitX='') |
|---|
| 836 | group = wsname+'_a0,'+wsname+'_a1' |
|---|
| 837 | GroupWorkspaces(InputWorkspaces=group,OutputWorkspace=wsname) |
|---|
| 838 | return wsname |
|---|
| 839 | |
|---|
| 840 | def msdfitPlotSeq(inputWS, xlabel): |
|---|
| 841 | msd_plot = mp.plotSpectrum(inputWS+'_a1',0,True) |
|---|
| 842 | msd_layer = msd_plot.activeLayer() |
|---|
| 843 | msd_layer.setAxisTitle(mp.Layer.Bottom,xlabel) |
|---|
| 844 | msd_layer.setAxisTitle(mp.Layer.Left,'<u2>') |
|---|
| 845 | |
|---|
| 846 | def msdfitPlotFits(calcWS, n): |
|---|
| 847 | mfit_plot = mp.plotSpectrum(calcWS+'_0',[0,1],True) |
|---|
| 848 | mfit_layer = mfit_plot.activeLayer() |
|---|
| 849 | mfit_layer.setAxisTitle(mp.Layer.Left,'log(Elastic Intensity)') |
|---|
| 850 | |
|---|
| 851 | def msdfit(inputs, startX, endX, Save=False, Verbose=False, Plot=True): |
|---|
| 852 | StartTime('msdFit') |
|---|
| 853 | workdir = config['defaultsave.directory'] |
|---|
| 854 | log_type = 'sample' |
|---|
| 855 | file = inputs[0] |
|---|
| 856 | (direct, filename) = os.path.split(file) |
|---|
| 857 | (root, ext) = os.path.splitext(filename) |
|---|
| 858 | (instr, first) = getInstrRun(filename) |
|---|
| 859 | if Verbose: |
|---|
| 860 | logger.notice('Reading Run : '+file) |
|---|
| 861 | LoadNexusProcessed(FileName=file, OutputWorkspace=root) |
|---|
| 862 | nHist = mtd[root].getNumberHistograms() |
|---|
| 863 | file_list = [] |
|---|
| 864 | run_list = [] |
|---|
| 865 | ws = mtd[root] |
|---|
| 866 | ws_run = ws.getRun() |
|---|
| 867 | vertAxisValues = ws.getAxis(1).extractValues() |
|---|
| 868 | x_list = vertAxisValues |
|---|
| 869 | if 'Vaxis' in ws_run: |
|---|
| 870 | xlabel = ws_run.getLogData('Vaxis').value |
|---|
| 871 | for nr in range(0, nHist): |
|---|
| 872 | nsam,ntc = CheckHistZero(root) |
|---|
| 873 | lnWS = '__lnI_'+str(nr) |
|---|
| 874 | file_list.append(lnWS) |
|---|
| 875 | ExtractSingleSpectrum(InputWorkspace=root, OutputWorkspace=lnWS, |
|---|
| 876 | WorkspaceIndex=nr) |
|---|
| 877 | if (nr == 0): |
|---|
| 878 | run_list = lnWS |
|---|
| 879 | else: |
|---|
| 880 | run_list += ';'+lnWS |
|---|
| 881 | mname = root[:-4] |
|---|
| 882 | msdWS = mname+'_msd' |
|---|
| 883 | if Verbose: |
|---|
| 884 | logger.notice('Fitting Runs '+mname) |
|---|
| 885 | logger.notice('Q-range from '+str(startX)+' to '+str(endX)) |
|---|
| 886 | function = 'name=LinearBackground, A0=0, A1=0' |
|---|
| 887 | PlotPeakByLogValue(Input=run_list, OutputWorkspace=msdWS+'_Table', Function=function, |
|---|
| 888 | StartX=startX, EndX=endX, FitType = 'Sequential') |
|---|
| 889 | msdfitParsToWS(msdWS, x_list) |
|---|
| 890 | nr = 0 |
|---|
| 891 | fitWS = mname+'_Fit' |
|---|
| 892 | calcWS = mname+'_msd_Result' |
|---|
| 893 | a0 = mtd[msdWS+'_a0'].readY(0) |
|---|
| 894 | a1 = mtd[msdWS+'_a1'].readY(0) |
|---|
| 895 | for nr in range(0, nHist): |
|---|
| 896 | inWS = file_list[nr] |
|---|
| 897 | CropWorkspace(InputWorkspace=inWS,OutputWorkspace='__data',XMin=0.95*startX,XMax=1.05*endX) |
|---|
| 898 | dataX = mtd['__data'].readX(0) |
|---|
| 899 | nxd = len(dataX) |
|---|
| 900 | dataX = np.append(dataX,2*dataX[nxd-1]-dataX[nxd-2]) |
|---|
| 901 | dataY = np.array(mtd['__data'].readY(0)) |
|---|
| 902 | dataE = np.array(mtd['__data'].readE(0)) |
|---|
| 903 | xd = [] |
|---|
| 904 | yd = [] |
|---|
| 905 | ed = [] |
|---|
| 906 | for n in range(0,nxd): |
|---|
| 907 | line = a0[nr] - a1[nr]*dataX[n] |
|---|
| 908 | xd.append(dataX[n]) |
|---|
| 909 | yd.append(line) |
|---|
| 910 | ed.append(0.0) |
|---|
| 911 | xd.append(dataX[nxd]) |
|---|
| 912 | dataX = np.append(dataX,np.array(xd)) |
|---|
| 913 | dataY = np.append(dataY,np.array(yd)) |
|---|
| 914 | dataE = np.append(dataE,np.array(ed)) |
|---|
| 915 | fout = calcWS +'_'+ str(nr) |
|---|
| 916 | CreateWorkspace(OutputWorkspace=fout, DataX=dataX, DataY=dataY, DataE=dataE, |
|---|
| 917 | Nspec=2, UnitX='DeltaE', VerticalAxisUnit='Text', VerticalAxisValues='Data,Calc') |
|---|
| 918 | if nr == 0: |
|---|
| 919 | gro = fout |
|---|
| 920 | else: |
|---|
| 921 | gro += ',' + fout |
|---|
| 922 | DeleteWorkspace(inWS) |
|---|
| 923 | DeleteWorkspace('__data') |
|---|
| 924 | GroupWorkspaces(InputWorkspaces=gro,OutputWorkspace=calcWS) |
|---|
| 925 | if Plot: |
|---|
| 926 | msdfitPlotSeq(msdWS, xlabel) |
|---|
| 927 | msdfitPlotFits(calcWS, 0) |
|---|
| 928 | if Save: |
|---|
| 929 | msd_path = os.path.join(workdir, msdWS+'.nxs') # path name for nxs file |
|---|
| 930 | SaveNexusProcessed(InputWorkspace=msdWS, Filename=msd_path, Title=msdWS) |
|---|
| 931 | if Verbose: |
|---|
| 932 | logger.notice('Output msd file : '+msd_path) |
|---|
| 933 | EndTime('msdFit') |
|---|
| 934 | return msdWS |
|---|
| 935 | |
|---|
| 936 | def plotInput(inputfiles,spectra=[]): |
|---|
| 937 | OneSpectra = False |
|---|
| 938 | if len(spectra) != 2: |
|---|
| 939 | spectra = [spectra[0], spectra[0]] |
|---|
| 940 | OneSpectra = True |
|---|
| 941 | workspaces = [] |
|---|
| 942 | for file in inputfiles: |
|---|
| 943 | root = LoadNexus(Filename=file) |
|---|
| 944 | if not OneSpectra: |
|---|
| 945 | GroupDetectors(root, root, |
|---|
| 946 | DetectorList=range(spectra[0],spectra[1]+1) ) |
|---|
| 947 | workspaces.append(root) |
|---|
| 948 | if len(workspaces) > 0: |
|---|
| 949 | graph = mp.plotSpectrum(workspaces,0) |
|---|
| 950 | layer = graph.activeLayer().setTitle(", ".join(workspaces)) |
|---|
| 951 | |
|---|
| 952 | ############################################################################## |
|---|
| 953 | # Corrections |
|---|
| 954 | ############################################################################## |
|---|
| 955 | |
|---|
| 956 | def CubicFit(inputWS, spec, Verbose=False): |
|---|
| 957 | '''Uses the Mantid Fit Algorithm to fit a quadratic to the inputWS |
|---|
| 958 | parameter. Returns a list containing the fitted parameter values.''' |
|---|
| 959 | function = 'name=Quadratic, A0=1, A1=0, A2=0' |
|---|
| 960 | fit = Fit(Function=function, InputWorkspace=inputWS, WorkspaceIndex=spec, |
|---|
| 961 | CreateOutput=True, Output='Fit') |
|---|
| 962 | table = mtd['Fit_Parameters'] |
|---|
| 963 | A0 = table.cell(0,1) |
|---|
| 964 | A1 = table.cell(1,1) |
|---|
| 965 | A2 = table.cell(2,1) |
|---|
| 966 | Abs = [A0, A1, A2] |
|---|
| 967 | if Verbose: |
|---|
| 968 | logger.notice('Group '+str(spec)+' of '+inputWS+' ; fit coefficients are : '+str(Abs)) |
|---|
| 969 | return Abs |
|---|
| 970 | |
|---|
| 971 | def applyCorrections(inputWS, canWS, corr, Verbose=False): |
|---|
| 972 | '''Through the PolynomialCorrection algorithm, makes corrections to the |
|---|
| 973 | input workspace based on the supplied correction values.''' |
|---|
| 974 | # Corrections are applied in Lambda (Wavelength) |
|---|
| 975 | efixed = getEfixed(inputWS) # Get efixed |
|---|
| 976 | theta,Q = GetThetaQ(inputWS) |
|---|
| 977 | sam_name = getWSprefix(inputWS) |
|---|
| 978 | ConvertUnits(InputWorkspace=inputWS, OutputWorkspace=inputWS, Target='Wavelength', |
|---|
| 979 | EMode='Indirect', EFixed=efixed) |
|---|
| 980 | if canWS != '': |
|---|
| 981 | (instr, can_run) = getInstrRun(canWS) |
|---|
| 982 | corrections = [corr+'_1', corr+'_2', corr+'_3', corr+'_4'] |
|---|
| 983 | CorrectedWS = sam_name +'Correct_'+ can_run |
|---|
| 984 | ConvertUnits(InputWorkspace=canWS, OutputWorkspace=canWS, Target='Wavelength', |
|---|
| 985 | EMode='Indirect', EFixed=efixed) |
|---|
| 986 | else: |
|---|
| 987 | corrections = [corr+'_1'] |
|---|
| 988 | CorrectedWS = sam_name +'Corrected' |
|---|
| 989 | nHist = mtd[inputWS].getNumberHistograms() |
|---|
| 990 | # Check that number of histograms in each corrections workspace matches |
|---|
| 991 | # that of the input (sample) workspace |
|---|
| 992 | for ws in corrections: |
|---|
| 993 | if ( mtd[ws].getNumberHistograms() != nHist ): |
|---|
| 994 | raise ValueError('Mismatch: num of spectra in '+ws+' and inputWS') |
|---|
| 995 | # Workspaces that hold intermediate results |
|---|
| 996 | CorrectedSampleWS = '__csam' |
|---|
| 997 | CorrectedCanWS = '__ccan' |
|---|
| 998 | for i in range(0, nHist): # Loop through each spectra in the inputWS |
|---|
| 999 | ExtractSingleSpectrum(InputWorkspace=inputWS, OutputWorkspace=CorrectedSampleWS, |
|---|
| 1000 | WorkspaceIndex=i) |
|---|
| 1001 | if ( len(corrections) == 1 ): |
|---|
| 1002 | Ass = CubicFit(corrections[0], i, Verbose) |
|---|
| 1003 | PolynomialCorrection(InputWorkspace=CorrectedSampleWS, OutputWorkspace=CorrectedSampleWS, |
|---|
| 1004 | Coefficients=Ass, Operation='Divide') |
|---|
| 1005 | if ( i == 0 ): |
|---|
| 1006 | CloneWorkspace(InputWorkspace=CorrectedSampleWS, OutputWorkspace=CorrectedWS) |
|---|
| 1007 | else: |
|---|
| 1008 | ConjoinWorkspaces(InputWorkspace1=CorrectedWS, InputWorkspace2=CorrectedSampleWS) |
|---|
| 1009 | else: |
|---|
| 1010 | ExtractSingleSpectrum(InputWorkspace=canWS, OutputWorkspace=CorrectedCanWS, |
|---|
| 1011 | WorkspaceIndex=i) |
|---|
| 1012 | Acc = CubicFit(corrections[3], i, Verbose) |
|---|
| 1013 | PolynomialCorrection(InputWorkspace=CorrectedCanWS, OutputWorkspace=CorrectedCanWS, |
|---|
| 1014 | Coefficients=Acc, Operation='Divide') |
|---|
| 1015 | Acsc = CubicFit(corrections[2], i, Verbose) |
|---|
| 1016 | PolynomialCorrection(InputWorkspace=CorrectedCanWS, OutputWorkspace=CorrectedCanWS, |
|---|
| 1017 | Coefficients=Acsc, Operation='Multiply') |
|---|
| 1018 | Minus(LHSWorkspace=CorrectedSampleWS, RHSWorkspace=CorrectedCanWS, OutputWorkspace=CorrectedSampleWS) |
|---|
| 1019 | Assc = CubicFit(corrections[1], i, Verbose) |
|---|
| 1020 | PolynomialCorrection(InputWorkspace=CorrectedSampleWS, OutputWorkspace=CorrectedSampleWS, |
|---|
| 1021 | Coefficients=Assc, Operation='Divide') |
|---|
| 1022 | if ( i == 0 ): |
|---|
| 1023 | CloneWorkspace(InputWorkspace=CorrectedSampleWS, OutputWorkspace=CorrectedWS) |
|---|
| 1024 | else: |
|---|
| 1025 | ConjoinWorkspaces(InputWorkspace1=CorrectedWS, InputWorkspace2=CorrectedSampleWS, |
|---|
| 1026 | CheckOverlapping=False) |
|---|
| 1027 | ConvertUnits(InputWorkspace=inputWS, OutputWorkspace=inputWS, Target='DeltaE', |
|---|
| 1028 | EMode='Indirect', EFixed=efixed) |
|---|
| 1029 | ConvertUnits(InputWorkspace=CorrectedWS, OutputWorkspace=CorrectedWS, Target='DeltaE', |
|---|
| 1030 | EMode='Indirect', EFixed=efixed) |
|---|
| 1031 | ConvertSpectrumAxis(InputWorkspace=CorrectedWS, OutputWorkspace=CorrectedWS+'_rqw', Target='ElasticQ', |
|---|
| 1032 | EMode='Indirect', EFixed=efixed) |
|---|
| 1033 | RenameWorkspace(InputWorkspace=CorrectedWS, OutputWorkspace=CorrectedWS+'_red') |
|---|
| 1034 | if canWS != '': |
|---|
| 1035 | DeleteWorkspace(CorrectedCanWS) |
|---|
| 1036 | ConvertUnits(InputWorkspace=canWS, OutputWorkspace=canWS, Target='DeltaE', |
|---|
| 1037 | EMode='Indirect', EFixed=efixed) |
|---|
| 1038 | DeleteWorkspace('Fit_NormalisedCovarianceMatrix') |
|---|
| 1039 | DeleteWorkspace('Fit_Parameters') |
|---|
| 1040 | DeleteWorkspace('Fit_Workspace') |
|---|
| 1041 | DeleteWorkspace('corrections') |
|---|
| 1042 | return CorrectedWS |
|---|
| 1043 | |
|---|
| 1044 | def abscorFeeder(sample, container, geom, useCor, Verbose=False, ScaleOrNotToScale=False, factor=1, Save=False, |
|---|
| 1045 | PlotResult='None', PlotContrib=False): |
|---|
| 1046 | '''Load up the necessary files and then passes them into the main |
|---|
| 1047 | applyCorrections routine.''' |
|---|
| 1048 | StartTime('ApplyCorrections') |
|---|
| 1049 | workdir = config['defaultsave.directory'] |
|---|
| 1050 | CheckAnalysers(sample,container,Verbose) |
|---|
| 1051 | s_hist,sxlen = CheckHistZero(sample) |
|---|
| 1052 | sam_name = getWSprefix(sample) |
|---|
| 1053 | efixed = getEfixed(sample) # Get efixed |
|---|
| 1054 | if container != '': |
|---|
| 1055 | CheckHistSame(sample,'Sample',container,'Container') |
|---|
| 1056 | (instr, can_run) = getInstrRun(container) |
|---|
| 1057 | if ScaleOrNotToScale: |
|---|
| 1058 | Scale(InputWorkspace=container, OutputWorkspace=container, Factor=factor, Operation='Multiply') |
|---|
| 1059 | if Verbose: |
|---|
| 1060 | logger.notice('Container scaled by '+str(factor)) |
|---|
| 1061 | if useCor: |
|---|
| 1062 | if Verbose: |
|---|
| 1063 | text = 'Correcting sample ' + sample |
|---|
| 1064 | if container != '': |
|---|
| 1065 | text += ' with ' + container |
|---|
| 1066 | logger.notice(text) |
|---|
| 1067 | file = sam_name + geom +'_Abs.nxs' |
|---|
| 1068 | abs_path = os.path.join(workdir, file) # path name for nxs file |
|---|
| 1069 | if Verbose: |
|---|
| 1070 | logger.notice('Correction file :'+abs_path) |
|---|
| 1071 | LoadNexus(Filename=abs_path, OutputWorkspace='corrections') |
|---|
| 1072 | cor_result = applyCorrections(sample, container, 'corrections', Verbose) |
|---|
| 1073 | rws = mtd[cor_result+'_red'] |
|---|
| 1074 | outNm= cor_result + '_Result_' |
|---|
| 1075 | if Save: |
|---|
| 1076 | cred_path = os.path.join(workdir,cor_result+'_red.nxs') |
|---|
| 1077 | SaveNexusProcessed(InputWorkspace=cor_result+'_red',Filename=cred_path) |
|---|
| 1078 | if Verbose: |
|---|
| 1079 | logger.notice('Output file created : '+cred_path) |
|---|
| 1080 | calc_plot = [cor_result+'_red',sample] |
|---|
| 1081 | res_plot = cor_result+'_rqw' |
|---|
| 1082 | else: |
|---|
| 1083 | if ( container == '' ): |
|---|
| 1084 | sys.exit('ERROR *** Invalid options - nothing to do!') |
|---|
| 1085 | else: |
|---|
| 1086 | sub_result = sam_name +'Subtract_'+ can_run |
|---|
| 1087 | if Verbose: |
|---|
| 1088 | logger.notice('Subtracting '+container+' from '+sample) |
|---|
| 1089 | Minus(LHSWorkspace=sample,RHSWorkspace=container,OutputWorkspace=sub_result) |
|---|
| 1090 | ConvertSpectrumAxis(InputWorkspace=sub_result, OutputWorkspace=sub_result+'_rqw', Target='ElasticQ', |
|---|
| 1091 | EMode='Indirect', EFixed=efixed) |
|---|
| 1092 | RenameWorkspace(InputWorkspace=sub_result, OutputWorkspace=sub_result+'_red') |
|---|
| 1093 | rws = mtd[sub_result+'_red'] |
|---|
| 1094 | outNm= sub_result + '_Result_' |
|---|
| 1095 | if Save: |
|---|
| 1096 | sred_path = os.path.join(workdir,sub_result+'_red.nxs') |
|---|
| 1097 | SaveNexusProcessed(InputWorkspace=sub_result+'_red',Filename=sred_path) |
|---|
| 1098 | if Verbose: |
|---|
| 1099 | logger.notice('Output file created : '+sred_path) |
|---|
| 1100 | res_plot = sub_result+'_rqw' |
|---|
| 1101 | if (PlotResult != 'None'): |
|---|
| 1102 | plotCorrResult(res_plot,PlotResult) |
|---|
| 1103 | if ( container != '' ): |
|---|
| 1104 | sws = mtd[sample] |
|---|
| 1105 | cws = mtd[container] |
|---|
| 1106 | names = 'Sample,Can,Calc' |
|---|
| 1107 | for i in range(0, s_hist): # Loop through each spectra in the inputWS |
|---|
| 1108 | dataX = np.array(sws.readX(i)) |
|---|
| 1109 | dataY = np.array(sws.readY(i)) |
|---|
| 1110 | dataE = np.array(sws.readE(i)) |
|---|
| 1111 | dataX = np.append(dataX,np.array(cws.readX(i))) |
|---|
| 1112 | dataY = np.append(dataY,np.array(cws.readY(i))) |
|---|
| 1113 | dataE = np.append(dataE,np.array(cws.readE(i))) |
|---|
| 1114 | dataX = np.append(dataX,np.array(rws.readX(i))) |
|---|
| 1115 | dataY = np.append(dataY,np.array(rws.readY(i))) |
|---|
| 1116 | dataE = np.append(dataE,np.array(rws.readE(i))) |
|---|
| 1117 | fout = outNm + str(i) |
|---|
| 1118 | CreateWorkspace(OutputWorkspace=fout, DataX=dataX, DataY=dataY, DataE=dataE, |
|---|
| 1119 | Nspec=3, UnitX='DeltaE', VerticalAxisUnit='Text', VerticalAxisValues=names) |
|---|
| 1120 | if i == 0: |
|---|
| 1121 | group = fout |
|---|
| 1122 | else: |
|---|
| 1123 | group += ',' + fout |
|---|
| 1124 | GroupWorkspaces(InputWorkspaces=group,OutputWorkspace=outNm[:-1]) |
|---|
| 1125 | if PlotContrib: |
|---|
| 1126 | plotCorrContrib(outNm+'0',[0,1,2]) |
|---|
| 1127 | if Save: |
|---|
| 1128 | res_path = os.path.join(workdir,outNm[:-1]+'.nxs') |
|---|
| 1129 | SaveNexusProcessed(InputWorkspace=outNm[:-1],Filename=res_path) |
|---|
| 1130 | if Verbose: |
|---|
| 1131 | logger.notice('Output file created : '+res_path) |
|---|
| 1132 | EndTime('ApplyCorrections') |
|---|
| 1133 | |
|---|
| 1134 | def plotCorrResult(inWS,PlotResult): |
|---|
| 1135 | nHist = mtd[inWS].getNumberHistograms() |
|---|
| 1136 | if (PlotResult == 'Spectrum' or PlotResult == 'Both'): |
|---|
| 1137 | if nHist >= 10: #only plot up to 10 hists |
|---|
| 1138 | nHist = 10 |
|---|
| 1139 | plot_list = [] |
|---|
| 1140 | for i in range(0, nHist): |
|---|
| 1141 | plot_list.append(i) |
|---|
| 1142 | res_plot=mp.plotSpectrum(inWS,plot_list) |
|---|
| 1143 | if (PlotResult == 'Contour' or PlotResult == 'Both'): |
|---|
| 1144 | if nHist >= 5: #needs at least 5 hists for a contour |
|---|
| 1145 | mp.importMatrixWorkspace(inWS).plotGraph2D() |
|---|
| 1146 | |
|---|
| 1147 | def plotCorrContrib(plot_list,n): |
|---|
| 1148 | con_plot=mp.plotSpectrum(plot_list,n) |
|---|